Effectiveness of Automatic Translations for Cross-Lingual Ontology Mapping

Mamoun Abu Helou, Matteo Palmonari, Mustafa Jarrar
2016 The Journal of Artificial Intelligence Research  
Accessing or integrating data lexicalized in different languages is a challenge. Multilingual lexical resources play a fundamental role in reducing the language barriers to map concepts lexicalized in different languages. In this paper we present a large-scale study on the effectiveness of automatic translations to support two key cross-lingual ontology mapping tasks: the retrieval of candidate matches and the selection of the correct matches for inclusion in the final alignment. We conduct our
more » ... experiments using four different large gold standards, each one consisting of a pair of mapped wordnets, to cover four different families of languages. We categorize concepts based on their lexicalization (type of words, synonym richness, position in a subconcept graph) and analyze their distributions in the gold standards. Leveraging this categorization, we measure several aspects of translation effectiveness, such as word-translation correctness, word sense coverage, synset and synonym coverage. Finally, we thoroughly discuss several findings of our study, which we believe are helpful for the design of more sophisticated cross-lingual mapping algorithms.
doi:10.1613/jair.4789 fatcat:u24injxvhzazrdulss5fmgvfca