How to Explain the Cross-Section of Equity Returns through Common Principal Components

José Manuel Cueto, Aurea Grané, Ignacio Cascos
2021 Mathematics  
In this paper, we propose a procedure to obtain and test multifactor models based on statistical and financial factors. A major issue in the factor literature is to select the factors included in the model, as well as the construction of the portfolios. We deal with this matter using a dimensionality reduction technique designed to work with several groups of data called Common Principal Components. A block-bootstrap methodology is developed to assess the validity of the model and the
more » ... l and the significance of the parameters involved. Data come from Reuters, correspond to nearly 1250 EU companies, and span from October 2009 to October 2019. We also compare our bootstrap-based inferential results with those obtained via classical testing proposals. Methods under assessment are time-series regression and cross-sectional regression. The main findings indicate that the multifactor model proposed improves the Capital Asset Pricing Model with regard to the adjusted-R2 in the time-series regressions. Cross-section regression results reveal that Market and a factor related to Momentum and mean of stocks' returns have positive risk premia for the analyzed period. Finally, we also observe that tests based on block-bootstrap statistics are more conservative with the null than classical procedures.
doi:10.3390/math9091011 fatcat:vsfcaf435nairma3jsqh5uq44q