Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism

Nicolás Bernal, A. E. Cárcamo Hernández, Ivo de Medeiros Varzielas, Sergey Kovalenko
2018 Journal of High Energy Physics  
We formulate a predictive model of fermion masses and mixings based on a Δ(27) family symmetry. In the quark sector the model leads to the viable mixing inspired texture where the Cabibbo angle comes from the down quark sector and the other angles come from both up and down quark sectors. In the lepton sector the model generates a predictive structure for charged leptons and, after radiative seesaw, an effective neutrino mass matrix with only one real and one complex parameter. We carry out a
more » ... tailed analysis of the predictions in the lepton sector, where the model is only viable for inverted neutrino mass hierarchy, predicting a strict correlation between θ_23 and θ_13. We show a benchmark point that leads to the best-fit values of θ_12, θ_13, predicting a specific sin^2θ_23≃ 0.51 (within the 3 σ range), a leptonic CP-violating Dirac phase δ≃ 281.6 ^∘ and for neutrinoless double-beta decay m_ee≃ 41.3 meV. We turn then to an analysis of the dark matter candidates in the model, which are stabilized by an unbroken Z_2 symmetry. We discuss the possibility of scalar dark matter, which can generate the observed abundance through the Higgs portal by the standard WIMP mechanism. An interesting possibility arises if the lightest heavy Majorana neutrino is the lightest Z_2-odd particle. The model can produce a viable fermionic dark matter candidate, but only as a feebly interacting massive particle (FIMP), with the smallness of the coupling to the visible sector protected by a symmetry and directly related to the smallness of the light neutrino masses.
doi:10.1007/jhep05(2018)053 fatcat:or36zxvs2ncxlh2wgqv6ukjcci