Minimum T-cuts and optimal T-pairings

Romeo Rizzi
<span title="">2002</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
We introduce the notion of T -pairing and give a min-max characterization for the minimum size of a T -cut. We show that the coe cients in the minimal TDI system for the T -cut polyhedron can be arbitrarily big.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/s0012-365x(02)00397-7</a> <a target="_blank" rel="external noopener" href="">fatcat:wgyvoah4hjbpnfddeodkwsbwoq</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>