Minimum T-cuts and optimal T-pairings

Romeo Rizzi
<span title="">2002</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
We introduce the notion of T -pairing and give a min-max characterization for the minimum size of a T -cut. We show that the coe cients in the minimal TDI system for the T -cut polyhedron can be arbitrarily big.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(02)00397-7">doi:10.1016/s0012-365x(02)00397-7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wgyvoah4hjbpnfddeodkwsbwoq">fatcat:wgyvoah4hjbpnfddeodkwsbwoq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170924101042/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/12d/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAxMjM2NXgwMjAwMzk3Nw%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/47/b2/47b2df7d154ad7044944b5d4ce87c4cfe253440f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(02)00397-7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>