Ontology Extraction and Usage in the Scholarly Knowledge Domain [article]

Angelo A. Salatino, Francesco Osborne, Enrico Motta
<span title="2020-08-04">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Ontologies of research areas have been proven to be useful in many application for analysing and making sense of scholarly data. In this chapter, we present the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field of Computer Science, and discuss a number of applications that build on CSO, to support high-level tasks, such as topic classification, metadata extraction, and recommendation of books.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2003.12611v2">arXiv:2003.12611v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/sxmuv4i5mjaq3db7tlcmy47ue4">fatcat:sxmuv4i5mjaq3db7tlcmy47ue4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200929161343/https://arxiv.org/pdf/2003.12611v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9b/0d/9b0d237ce65e2360bcadba828df711f56b347791.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2003.12611v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>