5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

Gerhard Wunder, Martin Kasparick, Stephan ten Brink, Frank Schaich, Thorsten Wild, Ivan Gaspar, Eckhard Ohlmer, Stefan Krone, Nicola Michailow, Ainoa Navarro, Gerhard Fettweis, Dimitri Ktenas (+4 others)
<span title="">2013</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/c7uum6msqjcatl55ihklv6wdte" style="color: black;">2013 IEEE 77th Vehicular Technology Conference (VTC Spring)</a> </i> &nbsp;
LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky
more &raquo; ... es necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/vtcspring.2013.6691814">doi:10.1109/vtcspring.2013.6691814</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/vtc/WunderKBSWGOKMNFKBDPE13.html">dblp:conf/vtc/WunderKBSWGOKMNFKBDPE13</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ap2im3ma35ehtdhf2iixnuzkje">fatcat:ap2im3ma35ehtdhf2iixnuzkje</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200904034706/https://arxiv.org/ftp/arxiv/papers/1212/1212.4034.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <span style="color: #f43e3e;">&#10033;</span> <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/94/2f/942f149403a332adc802a593797bc214776d67fa.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/vtcspring.2013.6691814"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>