Deep advantage learning for optimal dynamic treatment regime

Shuhan Liang, Wenbin Lu, Rui Song
<span title="2018-01-02">2018</span> <i title="Informa UK Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6cbedyil75fhlhb6iprjgrkblu" style="color: black;">Statistical Theory and Related Fields</a> </i> &nbsp;
Recently deep learning has successfully achieved state-of-the-art performance on many difficult tasks. Deep neural network outperforms many existing popular methods in the field of reinforcement learning. It can also identify important covariates automatically. Parameter sharing of convolutional neural network (CNN) greatly reduces the amount of parameters in the neural network, which allows for high scalability. However few research has been done on deep advantage learning (A-learning). In
more &raquo; ... paper, we present a deep A-learning approach to estimate optimal dynamic treatment regime. A-learning models the advantage function, which is of direct relevance to the goal. We use an inverse probability weighting (IPW) method to estimate the difference between potential outcomes, which does not require to make any model assumption on the baseline mean function. We implemented different architectures of deep CNN and convexified convolutional neural networks (CCNN). The proposed deep A-learning methods are applied to a data from the STAR*D trial and are shown to have better performance compared with the penalized least square estimator using a linear decision rule.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1080/24754269.2018.1466096">doi:10.1080/24754269.2018.1466096</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/30420972">pmid:30420972</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6226036/">pmcid:PMC6226036</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/mmfasu47qbefhacee7o7sbqfau">fatcat:mmfasu47qbefhacee7o7sbqfau</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200206120040/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6226036&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/20/ee/20ee23b218c4dda86524578348bd48fbaa7c5e04.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1080/24754269.2018.1466096"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> tandfonline.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226036" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>