Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping

Yongpeng Wang, Hong Yu, Guoyin Wang, Yongfang Xie
<span title="2020-04-20">2020</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4d3elkqvznfzho6ki7a35bt47u" style="color: black;">Entropy</a> </i> &nbsp;
Cross-domain recommendation is a promising solution in recommendation systems by using relatively rich information from the source domain to improve the recommendation accuracy of the target domain. Most of the existing methods consider the rating information of users in different domains, the label information of users and items and the review information of users on items. However, they do not effectively use the latent sentiment information to find the accurate mapping of latent features in
more &raquo; ... eviews between domains. User reviews usually include user's subjective views, which can reflect the user's preferences and sentiment tendencies to various attributes of the items. Therefore, in order to solve the cold-start problem in the recommendation process, this paper proposes a cross-domain recommendation algorithm (CDR-SAFM) based on sentiment analysis and latent feature mapping by combining the sentiment information implicit in user reviews in different domains. Different from previous sentiment research, this paper divides sentiment into three categories based on three-way decision ideas-namely, positive, negative and neutral-by conducting sentiment analysis on user review information. Furthermore, the Latent Dirichlet Allocation (LDA) is used to model the user's semantic orientation to generate the latent sentiment review features. Moreover, the Multilayer Perceptron (MLP) is used to obtain the cross domain non-linear mapping function to transfer the user's sentiment review features. Finally, this paper proves the effectiveness of the proposed CDR-SAFM framework by comparing it with existing recommendation algorithms in a cross-domain scenario on the Amazon dataset.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/e22040473">doi:10.3390/e22040473</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33286247">pmid:33286247</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2ioea6b5p5c4dc64ljdybiuuzi">fatcat:2ioea6b5p5c4dc64ljdybiuuzi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201127031643/https://res.mdpi.com/d_attachment/entropy/entropy-22-00473/article_deploy/entropy-22-00473-v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d1/19/d1192c0e4df1e2088d57ddb894dee1b0fab576ed.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/e22040473"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>