The edge-face coloring of graphs embedded in a surface of characteristic zero

Weifan Wang
<span title="">2009</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
Let G be a graph embedded in a surface of characteristic zero with maximum degree ∆. The edge-face chromatic number χ e f (G) of G is the least number of colors such that any two adjacent edges, adjacent faces, incident edge and face have different colors. In this paper, we prove that
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2007.12.055">doi:10.1016/j.disc.2007.12.055</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kocmhx3sbfekvdvl2obr3zxyiq">fatcat:kocmhx3sbfekvdvl2obr3zxyiq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190418005626/https://core.ac.uk/download/pdf/81127574.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e1/01/e101caef300afe8d74851c25154e9ed4d88c0832.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2007.12.055"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>