GOF-TTE: Generative Online Federated Learning Framework for Travel Time Estimation [article]

Zhiwen Zhang, Hongjun Wang, Jiyuan Chen, Zipei Fan, Xuan Song, Ryosuke Shibasaki
2022 arXiv   pre-print
Estimating the travel time of a path is an essential topic for intelligent transportation systems. It serves as the foundation for real-world applications, such as traffic monitoring, route planning, and taxi dispatching. However, building a model for such a data-driven task requires a large amount of users' travel information, which directly relates to their privacy and thus is less likely to be shared. The non-Independent and Identically Distributed (non-IID) trajectory data across data
more » ... also make a predictive model extremely challenging to be personalized if we directly apply federated learning. Finally, previous work on travel time estimation does not consider the real-time traffic state of roads, which we argue can significantly influence the prediction. To address the above challenges, we introduce GOF-TTE for the mobile user group, Generative Online Federated Learning Framework for Travel Time Estimation, which I) utilizes the federated learning approach, allowing private data to be kept on client devices while training, and designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. II) apart from sharing a base model at the server, adapts a fine-tuned personalized model for every client to study their personal driving habits, making up for the residual error made by localized global model prediction. % III) designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. We also employ a simple privacy attack to our framework and implement the differential privacy mechanism to further guarantee privacy safety. Finally, we conduct experiments on two real-world public taxi datasets of DiDi Chengdu and Xi'an. The experimental results demonstrate the effectiveness of our proposed framework.
arXiv:2207.00838v1 fatcat:xwbktwzaxjf3vdpb3injjcv4dm