A Real-Time Detection Algorithm for Sweet Cherry Fruit Maturity Based on YOLOX in the Natural Environment
Zhiyong Li, Xueqin Jiang, Luyu Shuai, Boda Zhang, Yiyu Yang, Jiong Mu
2022
Agronomy
Fast, accurate, and non-destructive large-scale detection of sweet cherry ripeness is the key to determining the optimal harvesting period and accurate grading by ripeness. Due to the complexity and variability of the orchard environment and the multi-scale, obscured, and even overlapping fruit, there are still problems of low detection accuracy even using the mainstream algorithm YOLOX in the absence of a large amount of tagging data. In this paper, we proposed an improved YOLOX target
more »
... n algorithm to quickly and accurately detect sweet cherry ripeness categories in complex environments. Firstly, we took a total of 2400 high-resolution images of immature, semi-ripe, and ripe sweet cherries in an orchard in Hanyuan County, Sichuan Province, including complex environments such as sunny days, cloudy days, branch and leaf shading, fruit overlapping, distant views, and similar colors of green fruits and leaves, and formed a dataset dedicated to sweet cherry ripeness detection by manually labeling 36068 samples, named SweetCherry. On this basis, an improved YOLOX target detection algorithm YOLOX-EIoU-CBAM was proposed, which embedded the Convolutional Block Attention Module (CBAM) between the backbone and neck of the YOLOX model to improve the model's attention to different channels, spaces capability, and replaced the original bounding box loss function of the YOLOX model with Efficient IoU (EIoU) loss to make the regression of the prediction box more accurate. Finally, we validated the feasibility and reliability of the YOLOX-EIoU-CBAM network on the SweetCherry dataset. The experimental results showed that the method in this paper significantly outperforms the traditional Faster R-CNN and SSD300 algorithms in terms of mean Average Precision (mAP), recall, model size, and single-image inference time. Compared with the YOLOX model, the mAP of this method is improved by 4.12%, recall is improved by 4.6%, F-score is improved by 2.34%, while model size and single-image inference time remain basically comparable. The method in this paper can cope well with complex backgrounds such as fruit overlap, branch and leaf occlusion, and can provide a data base and technical reference for other similar target detection problems.
doi:10.3390/agronomy12102482
fatcat:w63y723rgbdn3kvwx2aahoxvyy