A foreground object based quantitative assessment of dense stereo approaches for use in automotive environments

Oliver K. Hamilton, Toby P. Breckon, Xuejiao Bai, Sei-ichiro Kamata
2013 2013 IEEE International Conference on Image Processing  
There has been significant recent interest in stereo correspondence algorithms for use in the urban automotive environment [1, 2, 3] . In this paper we evaluate a range of dense stereo algorithms, using a unique evaluation criterion which provides quantitative analysis of accuracy against range, based on ground truth 3D annotated object information. The results show that while some algorithms provide greater scene coverage, we see little differentiation in accuracy over short ranges, while the
more » ... onverse is shown over longer ranges. Within our long range accuracy analysis we see a distinct separation of relative algorithm performance. This study extends prior work on dense stereo evaluation of Block Matching ( BM)[4], Semi-Global Block Matching (SGBM)[5], No Maximal Disparity (NoMD)[6], Cross[7], Adaptive Dynamic Programming (AdptDP)[8], Efficient Large Scale (ELAS)[9], Minimum Spanning Forest (MSF)[10] and Non-Local Aggregation (NLA)[11] using a novel quantitative metric relative to object range.
doi:10.1109/icip.2013.6738086 dblp:conf/icip/HamiltonBBK13 fatcat:gekexd5ljbdfbl2ce5zdjzob44