A Novel Classification Extension-Based Cloud Detection Method for Medium-Resolution Optical Images

Xidong Chen, Liangyun Liu, Yuan Gao, Xiao Zhang, Shuai Xie
2020 Remote Sensing  
Accurate cloud detection using medium-resolution multispectral satellite imagery (such as Landsat and Sentinel data) is always difficult due to the complex land surfaces, diverse cloud types, and limited number of available spectral bands, especially in the case of images without thermal bands. In this paper, a novel classification extension-based cloud detection (CECD) method was proposed for masking clouds in the medium-resolution images. The new method does not rely on thermal bands and can
more » ... e used for masking clouds in different types of medium-resolution satellite imagery. First, with the support of low-resolution satellite imagery with short revisit periods, cloud and non-cloud pixels were identified in the resampled low-resolution version of the medium-resolution cloudy image. Then, based on the identified cloud and non-cloud pixels and the resampled cloudy image, training samples were automatically collected to develop a random forest (RF) classifier. Finally, the developed RF classifier was extended to the corresponding medium-resolution cloudy image to generate an accurate cloud mask. The CECD method was applied to Landsat-8 and Sentinel-2 imagery to test the performance for different satellite images, and the well-known function of mask (FMASK) method was employed for comparison with our method. The results indicate that CECD is more accurate at detecting clouds in Landsat-8 and Sentinel-2 imagery, giving an average F-measure value of 97.65% and 97.11% for Landsat-8 and Sentinel-2 imagery, respectively, as against corresponding results of 90.80% and 88.47% for FMASK. It is concluded, therefore, that the proposed CECD algorithm is an effective cloud-classification algorithm that can be applied to the medium-resolution optical satellite imagery.
doi:10.3390/rs12152365 fatcat:lybmyq56infxtdolcex2yvnhni