Square-Cut: A Segmentation Algorithm on the Basis of a Rectangle Shape

Jan Egger, Tina Kapur, Thomas Dukatz, Malgorzata Kolodziej, Dženan Zukić, Bernd Freisleben, Christopher Nimsky, Yong Fan
2012 PLoS ONE  
We present a rectangle-based segmentation algorithm that sets up a graph and performs a graph cut to separate an object from the background. However, graph-based algorithms distribute the graph's nodes uniformly and equidistantly on the image. Then, a smoothness term is added to force the cut to prefer a particular shape. This strategy does not allow the cut to prefer a certain structure, especially when areas of the object are indistinguishable from the background. We solve this problem by
more » ... rring to a rectangle shape of the object when sampling the graph nodes, i.e., the nodes are distributed nonuniformly and non-equidistantly on the image. This strategy can be useful, when areas of the object are indistinguishable from the background. For evaluation, we focus on vertebrae images from Magnetic Resonance Imaging (MRI) datasets to support the time consuming manual slice-by-slice segmentation performed by physicians. The ground truth of the vertebrae boundaries were manually extracted by two clinical experts (neurological surgeons) with several years of experience in spine surgery and afterwards compared with the automatic segmentation results of the proposed scheme yielding an average Dice Similarity Coefficient (DSC) of 90.97\pm62.2%.
doi:10.1371/journal.pone.0031064 pmid:22363547 pmcid:PMC3283589 fatcat:h3gcngbrtjhghhwyb5ir7qbbuq