A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Local Adaptive Multiplicative Error Models for High- Frequency Forecasts
2012
Social Science Research Network
We propose a local adaptive multiplicative error model (MEM) accommodating timevarying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time. Analyzing one-minute cumulative trading volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours are reasonable to capture parameter variations while balancing
doi:10.2139/ssrn.2315830
fatcat:auqbpvbkdvgkbeil5e3eofg2au