Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. BioRXiv preprint [article]

Douglas B Kell, Etheresia Pretorius
2016 bioRxiv   pre-print
The chief and largely terminal element of normal blood clotting is considered to involve the polymerisation of the mainly alpha-helical fibrinogen to fibrin, with a binding mechanism involving "knobs and holes" but with otherwise littl change in protein secondary structure. We recognise, however, that extremely unusual mutations, or mechanical stressing,cancause fibrinogen to adopt a conformation containing extensive beta-sheets. Similarly, prions can change morphology from a largely
more » ... largely alpha-helical to a largely beta-sheet conformation, and the latter catalyses both the transition and the self-organising polymerisation of the beta-sheet structures. Many other proteins can do this, where it is known as amyloidogenesis. When fibrin is formed in samples from patients harbouring different diseases it can have widely varying diameters and morphologies. We here develop the idea, and summarise the evidence, that in many cases the anomalous fibrin fibre formation seen in such diseases actually amounts to amyloidogenesis. In particular, fibrin can interact withthe amyloid-beta (Abeta) protein that is misfolded in Alzheimer's disease. Seeing these unusual fibrin morphologies as true amyloids explains a great deal about fibrin(ogen) biology that was previously opaque, and provides novel strategies for treating such coagulopathies. The literature on blood clotting can usefully both inform and be informed by that on prions and on the many other widely recognised (beta)-amyloid proteins.
doi:10.1101/054734 fatcat:jzz7olnar5hdzalyv2bq7aheqm