A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Solar Power Interval Prediction via Lower and Upper Bound Estimation with a New Model Initialization Approach
2019
Energies
This paper proposes a new model initialization approach for solar power prediction interval based on the lower and upper bound estimation (LUBE) structure. The linear regression interval estimation (LRIE) was first used to initialize the prediction interval and the extreme learning machine auto encoder (ELM-AE) is then employed to initialize the input weight matrix of the LUBE. Based on the initialized prediction interval and input weight matrix, the output weight matrix of the LUBE could be
doi:10.3390/en12214146
fatcat:4cs7eye4era4djqfgylwteaanm