Auralist

Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia, Tamas Jambor
2012 Proceedings of the fifth ACM international conference on Web search and data mining - WSDM '12  
Recommendation systems exist to help users discover content in a large body of items. An ideal recommendation system should mimic the actions of a trusted friend or expert, producing a personalised collection of recommendations that balance between the desired goals of accuracy, diversity, novelty and serendipity. We introduce the Auralist recommendation framework, a system that -in contrast to previous work -attempts to balance and improve all four factors simultaneously. Using a collection of
more » ... novel algorithms inspired by principles of 'serendipitous discovery', we demonstrate a method of successfully injecting serendipity, novelty and diversity into recommendations whilst limiting the impact on accuracy. We evaluate Auralist quantitatively over a broad set of metrics and, with a user study on music recommendation, show that Auralist's emphasis on serendipity indeed improves user satisfaction.
doi:10.1145/2124295.2124300 dblp:conf/wsdm/ZhangSQJ12 fatcat:ajzweapzfvaqvfbsqbxcxm763e