New insights in the allelopathic traits of different barley genotypes: Middle Eastern and Tibetan wild-relative accessions vs. cultivated modern barley

Mauro Maver, Begoña Miras-Moreno, Luigi Lucini, Marco Trevisan, Youry Pii, Stefano Cesco, Tanja Mimmo, Zhong-Hua Chen
2020 PLoS ONE  
The two alkaloids gramine and hordenine have been known for playing a role in the allelopathic ability in barley (Hordeum vulgare L.). These allelochemicals can be both found in leaves and roots in some barley cultivars whereas in others one seems to exclude the other. In this study eighteen accessions of barley from the Middle-East area, one accession from Tibet and the modern spring cultivar Barke, already used as parental donor in a nested associated mapping (NAM) population, were screened
more » ... on, were screened for their gramine, hordenine and N-methyltyramine (the direct precursor of hordenine) content in leaves, roots and exudates. Moreover, the toxicity of the three allelochemicals on root growth inhibition on lettuce (Lactuca sativa L.) was evaluated. Results of this study showed the preferential production of gramine and hordenine in leaves and roots, respectively, in the nineteen barley accessions. On the other hand, in the modern barley cultivar Barke, the highest content of hordenine in roots and the general lack of gramine suggests a favored biosynthesis of the former. Gramine was not detected in the root exudates. In additions, different metabolomic profiles were observed in wild relatives compared to modern barley genotypes. The results also showed the phytotoxic effects of the three compounds on root growth of lettuce seedlings, with a reduction in root length and an increase of root surface area and diameter. In conclusion, this study highlighted the impact of the domestication effects on the production and distribution of the two allelopathic alkaloids gramine and hordenine in barley.
doi:10.1371/journal.pone.0231976 pmid:32324789 fatcat:s6s4lb6ybzdrrdexj24mxumbye