DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair

S W Matson, V M Mendonca, H D Klepin
1995
DNA helicases play pivotal roles in homologous recombination and recombinational DNA repair. They are involved in both the generation of recombinogenic single-stranded DNA ends and branch migration of synapsed Holliday junctions. Escherichia coli helicases II (uvrD), IV (helD), and RecQ (recQ) have all been implicated in the presynaptic stage of recombination in the RecF pathway. To probe for functional redundancy among these helicases, mutant strains containing single, double, and triple
more » ... ons in the helD, uvrD, and recQ genes were constructed and examined for conjugational recombination efficiency and DNA repair proficiency. We were unable to construct a strain harboring a delta recQ delta uvrD double deletion in a recBC sbcB(C) background (RecF pathway), suggesting that a delta recQ deletion mutation was lethal to the cell in a recBC sbcB(C) delta D background. However, we were able to construct a triple delta recQ delta uvrD Delta helD mutant in the recBC sbcB(C) background. This may be due to the increased mutator frequency in delta uvrD mutants which may have resulted in the fortuitous accumulation of a suppressor mutation(s). The triple helicase mutant recBC sbcB(C) delta uvrD delta recQ delta helD severely deficient in Hfr-mediated conjugational recombination and in the repair of methylmethane sulfonate-induced DNA damage. This suggests that the presence of at least one helicase--helicase II, RecQ helicase, or helicase IV--is essential for homologous recombination and recombinational DNA repair in a recBC sbcB(C) background. The triple helicase mutant was recombination and repair proficient in a rec+ background. Genetic analysis of the various double mutants unmasked additional functional redundancies with regard to conjugational recombination and DNA repair, suggesting that mechanisms of recombination depend both on the DNA substrates and on the genotype of the cell.
doi:10.17615/872n-4610 fatcat:rribxqcbcfa4rfypg5jycohqqy