Multi-Physics Analysis for Rubber-Cement Applications in Building and Architectural Fields: A Preliminary Analysis

Marco Valente, Matteo Sambucci, Abbas Sibai, Ettore Musacchi
2020 Sustainability  
Generally, in most countries, there are no strict regulations regarding tire disposal. Hence, tires end up thrown in seas and lands as well as being burnt, harming the living beings, and are therefore considered a very dangerous pollution source for the environment. Over the past few years, several researchers have worked on incorporating shredded/powdered rubber tires into cement-based material. This strategy shows a dual functionality: Economic–environmental benefits and technological
more » ... chnological functionalization of the building material. Rubber-modified cement materials show interesting engineering and architectural properties due to the physical-chemical nature of the tire rubber aggregates. However, the abovementioned performances are affected by type, size, and content of polymer particles used in the cement-based mixtures production. Whereas an increase in the rubber content in the cement mix will negatively affect the mechanical properties of the material as a decrease in its compression strength. This aspect is crucial for the use of the material in building applications, where proper structural integrity must be guaranteed. In this context, the development of innovative manufacturing technologies and the use of multi-physics simulation software represent useful approaches for the study of shapes and geometries designed to maximize the technological properties of the material. After an overview on the performances of 3D printable rubber-cement mixtures developed in our research laboratory, a preliminary experimental Finite Element Method (FEM) analysis will be described. The modeling work aims to highlight how the topology optimization allows maximizing of the physical-mechanical performances of a standard rubber-cement component for building-architectural applications.
doi:10.3390/su12155993 fatcat:yzgxypzk7zbfjfnxwnu3lux2dq