The more you know: Investigating why adults get a bigger memory boost from semantic congruency than children [article]

Wei-Chun Wang, Simona Ghetti, Garvin Brod, Silvia A. Bunge
2018 bioRxiv   pre-print
AbstractHumans possess the capacity to employ prior knowledge in the service of our ability to remember; thus, memory is oftentimes superior for information that is semantically congruent with our prior knowledge. This congruency benefit grows during development, but little is understood about neurodevelopmental differences that underlie this growth. Here, we sought to explore the brain mechanisms underlying these phenomena. To this end, we examined the neural substrates of semantically
more » ... t vs. incongruent item-context associations in 116 children and 25 young adults who performed encoding and retrieval tasks during functional MRI data collection. Participants encoded item-context pairs by judging whether an item belonged in a scene. Episodic memory was then tested with a source memory task. Consistent with prior work, source memory accuracy improved with age, and was greater for congruent than incongruent pairs; further, this congruency benefit was greater in adults than children. Age-related differences were observed across univariate, functional connectivity, and multivariate analyses, particularly in lateral prefrontal cortex (PFC). In sum, our results revealed two general age differences. First, left ventrolateral/rostrolateral PFC exhibited age-related increases in univariate activity, as well as greater functional connectivity with temporal regions during the processing of congruency. Second, right rostrolateral PFC activation was associated with successfully encoded congruent associations in adults, but not children. Finally, multivariate analyses provided evidence for stronger veridical memory in adults than children in right ventrolateral PFC. These effects in right lateral PFC were significantly correlated with memory performance, implicating them in the process of remembering congruent associations. These results connect brain regions associated with top-down control in the congruency benefit and age-related improvements therein.
doi:10.1101/456624 fatcat:5nyfljyug5depe4k65jidry2vm