KLASIFIKASI EMOSI PADA CUITAN DI TWITTER DENGAN PRINCIPAL COMPONENT ANALYSIS DAN SUPPORT VECTOR MACHINE

Abi Nizar Sutranggono
2022 Mathunesa: Jurnal Ilmiah Matematika  
Salah satu platform media sosial dengan total pengguna aktif harian terbesar adalah Twitter. Melalui Twitter, orang-orang bisa membagikan suatu pesan yang disebut dengan tweet. Ungkapan yang diekspresikan pada tweet dapat merefleksikan bagaimana emosi atau perasaan yang dimiliki seseorang. Emosi yang terkandung dalam sebuah tweet bisa dikenali lewat proses analisis sentimen. Namun, data teks Twitter tidak terstruktur, mengingat saat ini penggunaan singkatan kata, emoji, atau bahkan frasa khusus
more » ... banyak dijumpai pada tweet, termasuk tweet yang diunggah oleh masyarakat Indonesia. Sehingga, untuk mengidentifikasi emosi dari data teks Twitter melalui proses analisis sentimen dibutuhkan penerapan metode yang tepat. Di sisi lain, Machine Learning telah banyak diaplikasikan dalam melakukan tugas analisis sentimen. Kerangka kerja yang disajikan pada penelitian ini melibatkan penggunaan dari algoritma Machine Learning untuk dapat menganalisis emosi yang dimuat tweet berbahasa indonesia. Selebihnya, implementasi metode FastText dan teknik ekstraksi fitur PCA juga diterapkan agar output yang diberikan maksimal. Secara keseluruhan hasil penelitian menunjukkan bahwa classifier Support Vector Machine (SVM) dengan fungsi kernel RBF yang dikombinasikan menggunakan PCA memiliki kinerja yang unggul dalam mengklasifikasikan emosi pada tweet berbahasa indonesia, dimana berturut-turut Accuracy, Precision, Recall, serta F1 Score yang dicapai sebesar 70,52%, 74,60%, 69,80%, dan juga 71,20%.
doi:10.26740/mathunesa.v10n1.p13-20 fatcat:kosczxjnmff6xnztvrok55r4ga