Extensions of partial cyclic orders and consecutive coordinate polytopes [article]

Arvind Ayyer and Matthieu Josuat-Vergès and Sanjay Ramassamy
<span title="2019-06-29">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We introduce several classes of polytopes contained in [0,1]^n and cut out by inequalities involving sums of consecutive coordinates. We show that the normalized volumes of these polytopes enumerate circular extensions of certain partial cyclic orders. Among other things this gives a new point of view on a question popularized by Stanley. We also provide a combinatorial interpretation of the Ehrhart h^*-polynomials of some of these polytopes in terms of descents of total cyclic orders. The
more &raquo; ... numbers, the Eulerian numbers and the Narayana numbers appear as special cases.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1803.10351v3">arXiv:1803.10351v3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lrcic7iczfaevlqwjvxu3lg2ve">fatcat:lrcic7iczfaevlqwjvxu3lg2ve</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200826184238/https://arxiv.org/pdf/1803.10351v2.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <span style="color: #f43e3e;">&#10033;</span> <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/cc/c1/ccc1a87383cf125a00ea8ea618e6af2630a5be67.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1803.10351v3" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>