Projected changes in Rhine River flood seasonality under global warming [post]

Erwin Rottler, Axel Bronstert, Gerd Bürger, Oldrich Rakovec
2020 unpublished
Abstract. Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 °C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate
more » ... he present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.
doi:10.5194/hess-2020-605 fatcat:o7zu2pbrgrds7f5ic4bspxxvp4