Nichtlineare Optimierung von Kurven und Flächen mit Hilfe von Splines [article]

Alexander Röseler, Universität Stuttgart, Universität Stuttgart
2008
Ausgangspunkt dieser Diplomarbeit war das Problem der Erzeugung glatter Freiformflächen beliebiger topologischer Struktur. Denn wenn man zur Lösung dieses Problems Splineflächen über einem bestimmten Parameternetz - wie zum Beispiel dem hier verwendeten Vierecksnetz - verwendet, so erhält man im Allgemeinen so genannte irreguläre Ecken in dem Netz. Im vorliegenden Fall sind das Ecken, an denen nicht die übliche Anzahl von vier Flächenstücken zusammenstoßen. Für das spezielle Problem einer
more » ... risch glatten Fläche wurden von Reif Bedingungen angegeben, welche die Konstruktion solcher Flächen mit Splines vom Grad zwei (in beiden Parameterrichtungen) - den quadratischen G-Splines - erlauben. Damit lassen sich nun n-seitige Lücken durch geometrisch glatte Flächen schließen. In der Praxis ist dies jedoch oft noch nicht ausreichend. Man möchte vielmehr unter den vielen glatten Flächen, die die Lücke füllen, diejenige aussuchen, welche eine optimale Form besitzt. Diese optimale Form drückt sich mathematisch darin aus, dass die gesuchte Fläche ein bestimmtes Funktional optimiert. Ziel dieser Diplomarbeit war die Entwicklung und Erprobung eines geeigneten, möglichst schnellen und stabilen Verfahrens zur Optimierung. Gewählt wurde dazu ein Verfahren zweiter Ordnung, das auf der Idee des Newtonverfahrens basiert. Es wird zunächst für den einfachsten Fall einer als Funktion darstellbaren Kurve entwickelt. An diesem Fall lassen sich die Auswirkungen der Wahl verschiedener Parameter und Methoden am besten studieren, und das Ergebnis ist ein Verfahren zur Optimierung solcher spezieller Kurven. Genau wie bei den "klassischen" Finiten Elementen erhält man als zu lösende Gleichung schließlich ein großes lineares Gleichungssystem, dessen Größe sich nach der Dimension des verwendeten Raumes für die Diskretisierung richtet, das heißt nach der Anzahl der Basisfunktionen. Je mehr Basisfunktionen man wählt, je feiner man den Raum also macht, desto besser wird die Lösung des Problems darin approximiert. Der nächste Schritt ist die Vera [...]
doi:10.18419/opus-4828 fatcat:tk6x5me4o5eoxenmgfxgx2i63a