How Similar Are Two Elections?

Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, Stanisław Szufa, Nimrod Talmon
2019 PROCEEDINGS OF THE THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE TWENTY-EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE  
We introduce the ELECTION ISOMORPHISM problem and a family of its approximate variants, which we refer to as dISOMORPHISM DISTANCE (d-ID) problems (where d is a metric between preference orders). We show that ELECTION ISOMORPHISM is polynomial-time solvable, and that the d-ISOMORPHISM DISTANCE problems generalize various classic rank-aggregation methods (e.g., those of Kemeny and Litvak). We establish the complexity of our problems (including their inapproximability) and provide initial
more » ... ide initial experiments regarding the ability to solve them in practice.
doi:10.1609/aaai.v33i01.33011909 fatcat:7p3rsylw4natjfpodijfgezjeu