Serial Dependence in Visual Variance [post]

Marta Suárez-Pinilla, Anil Seth, Warrick Roseboom
2018 unpublished
The recent history of perceptual experience has been shown to influence subsequent perception. Classically, this dependence on perceptual history has been examined in sensory adaptation paradigms, wherein prolonged exposure to a particular stimulus (e.g. a vertically oriented grating) produces changes in perception of subsequently presented stimuli (e.g. the tilt aftereffect). More recently, several studies have investigated the influence of shorter perceptual exposure with effects, referred to
more » ... as serial dependence, being described for a variety of low and high-level perceptual dimensions. In this study, we examined serial dependence in the processing of dispersion statistics, namely variance - a key descriptor of the environment and indicative of the precision and reliability of ensemble representations. We found two opposite serial dependencies operating at different timescales, and likely originating at different processing levels: A positive, Bayesian-like bias was driven by the most recent exposures, dependent on feature-specific decision-making and appearing only when high confidence was placed in that decision; and a longer-lasting negative bias - akin to an adaptation after-effect - becoming manifest as the positive bias declined. Both effects were independent of spatial presentation location and the similarity of other close traits, such as mean direction of the visual variance stimulus. These findings suggest that visual variance processing occurs in high-level areas, but is also subject to a combination of multi-level mechanisms balancing perceptual stability and sensitivity, as with many different perceptual dimensions.
doi:10.31234/osf.io/gzdr6 fatcat:iyjlxnb46rbm3cdsksujlyns7u