Laser Surface Treatment [chapter]

Anas Ahmad Siddiqui, Avanish Kumar Dubey
2020 Engineering Steels and High Entropy-Alloys  
Laser surface treatment (LST) utilizes intense thermal energy of laser beam for modification, alloying, and cladding surface of substrate materials. In LST very high cooling rates of 104-106°C/s can be achieved. Such high cooling rate arrests the possibilities of segregation in the case of multicomponent systems. Moreover, very narrow heat-affected zone (HAZ) and easy automation make it suitable for large-scale industrial production. LST depends on many process parameters such as laser power,
more » ... h as laser power, scan speed, focal length, spot size, substrate temperature, and type of material. Selection of proper range of process parameters for good surface quality is essential. Pores and cracks may arise due to improper selection of parameters. Multilayered, high-entropy, thermal barrier coatings using LST with good bonding with substrates have been developed. Keywords: laser surface modification, laser surface alloying, laser cladding Engineering Steels and High Entropy-Alloys 2 components. There are wide varieties of surface modification techniques available. Some of these techniques are thermochemical coatings (nitriding, carburizing, cyaniding, etc.), electrodeposition, electroless deposition, spray coatings (flame spray, thermal spray coating, plasma spray coating, etc.), physical vapor deposition (PVD), chemical vapor deposition (CVD), laser surface modification (LSM), etc. These diverse techniques mutually form a branch termed as surface engineering. All these surface modification techniques have certain advantages and disadvantages. Table 1 lists some of the desirable attributes and corresponding behavior observed with different processes. For precision coatings of thermally sensitive and multicomponent materials, usually laser material processing is employed. Due to its localized heating and rapid solidification rates, thermal distortion and segregation possibilities are diminished. Also, high energy density leads to melting of almost any metal [9] . High-energy-density laser beam produces high dilution and good bonding strength, and very low heat-affected zone can be developed. Other techniques usually suffer in one or the other reasons. Also, high repeatability and controllability makes it a suitable technique for industrial standards. With the development in the automation sector, lasers having high accuracy and precision are available. Thus, in the last decade, a large number of literature dealing with application of lasers in various fields are available. These lasers may also be used to develop layer by layer lamina to develop a desired 3D structure. Laser-based techniques employed in 3D printing are selective laser melting and sintering. A part program of the 2D structure to be manufactured is developed. These 2D structures of the same or varying sections are developed above one another. These adjacent layers join together and form a required 3D structure. Hence, laser printing is very similar to surface treatment processes. This chapter in particular presents the ongoing trends of laser surface treatments in melt regime, i.e., it discusses techniques such as laser surface alloying, laser cladding (LC), selective laser melting, and laser glazing. Although the basis of these techniques is same, these techniques differ from one another in the desirability of final surface properties achieved. Numerical simulation and application of these techniques have been discussed.
doi:10.5772/intechopen.91800 fatcat:op54edwcyjdgpmfg3fda4nqxte