A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
$S$-Hypersimplices, Pulling Triangulations, and Monotone paths
2020
Electronic Journal of Combinatorics
An $S$-hypersimplex for $S \subseteq \{0,1, \dots,d\}$ is the convex hull of all $0/1$-vectors of length $d$ with coordinate sum in $S$. These polytopes generalize the classical hypersimplices as well as cubes, crosspolytopes, and halfcubes. In this paper we study faces and dissections of $S$-hypersimplices. Moreover, we show that monotone path polytopes of $S$-hypersimplices yield all types of multipermutahedra. In analogy to cubes, we also show that the number of simplices in a pulling
doi:10.37236/8457
fatcat:gjb5qghw6fhsbpsllwsjxqj6uu