Machine Learning for Neuroimaging with Scikit-Learn [article]

Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg (LNAO, INRIA Saclay - Ile de France), Philippe Gervais (NEUROSPIN, INRIA Saclay - Ile de France, LNAO), Andreas Muller, Jean Kossaifi, Alexandre Gramfort (NEUROSPIN, LTCI), Bertrand Thirion, Gäel Varoquaux
2014 arXiv   pre-print
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find
more » ... pulations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
arXiv:1412.3919v1 fatcat:fiepevd7gzbl3ecit47e7onl6m