Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra

Kiel Hock, Keith Earle
2016 Entropy  
In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes' Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. The posterior distribution allows us to
more » ... ne a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise.
doi:10.3390/e18020057 fatcat:jyvuf5bdizcv5nxmj7chegoe7a