Novel Uses of Category Theory in Modeling OOP [article]

Moez A. AbdelGawad
<span title="2017-12-29">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
An outline and summary of four new potential applications of category theory to OOP research are presented. These include (1) the use of operads to model Java subtyping, (2) the use of Yoneda's lemma and representable functors in the modeling of generic types in generic nominally-typed OOP, (3) using a combination of category presentations and cartesian closed categories to model structurally-typed OOP, and (4) the use of adjoint functors to model Java erasure.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1709.08056v4</a> <a target="_blank" rel="external noopener" href="">fatcat:ckxy2fuverelfkm5y2hwmffl5q</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>