A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs
[article]

2021
*
arXiv
*
pre-print

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph G embedded on a surface S is a subgraph of G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus g has a cut graph of length at most a given value. We

arXiv:1903.08603v3
fatcat:uasnm56bvje37mnm2ociswceqa