TRS: Transformers for Remote Sensing Scene Classification

Jianrong Zhang, Hongwei Zhao, Jiao Li
2021 Remote Sensing  
Remote sensing scene classification remains challenging due to the complexity and variety of scenes. With the development of attention-based methods, Convolutional Neural Networks (CNNs) have achieved competitive performance in remote sensing scene classification tasks. As an important method of the attention-based model, the Transformer has achieved great success in the field of natural language processing. Recently, the Transformer has been used for computer vision tasks. However, most
more » ... g methods divide the original image into multiple patches and encode the patches as the input of the Transformer, which limits the model's ability to learn the overall features of the image. In this paper, we propose a new remote sensing scene classification method, Remote Sensing Transformer (TRS), a powerful "pure CNNs→Convolution + Transformer → pure Transformers" structure. First, we integrate self-attention into ResNet in a novel way, using our proposed Multi-Head Self-Attention layer instead of 3 × 3 spatial revolutions in the bottleneck. Then we connect multiple pure Transformer encoders to further improve the representation learning performance completely depending on attention. Finally, we use a linear classifier for classification. We train our model on four public remote sensing scene datasets: UC-Merced, AID, NWPU-RESISC45, and OPTIMAL-31. The experimental results show that TRS exceeds the state-of-the-art methods and achieves higher accuracy.
doi:10.3390/rs13204143 fatcat:svpolh6htjc4ndqpqfq4isx54q