A hybrid method of genetic algorithm and support vector machine for intrusion detection

Mushtaq Talb Tally, Haleh Amintoosi
2021 International Journal of Power Electronics and Drive Systems (IJPEDS)  
With the development of web applications nowadays, intrusions represent a crucial aspect in terms of violating the security policies. Intrusions can be defined as a specific change in the normal behavior of the network operations that intended to violate the security policies of a particular network and affect its performance. Recently, several researchers have examined the capabilities of machine learning techniques in terms of detecting intrusions. One of the important issues behind using the
more » ... machine learning techniques lies on employing proper set of features. Since the literature has shown diversity of feature types, there is a vital demand to apply a feature selection approach in order to identify the most appropriate features for intrusion detection. This study aims to propose a hybrid method of Genetic Algorithm and Support Vector Machine. GA has been as a feature selection in order to select the best features, while SVM has been used as a classification method to categorize the behavior into normal and intrusion based on the selected features from GA. A benchmark dataset of intrusions (NSS-KDD) has been in the experiment. In addition, the proposed method has been compared with the traditional SVM. Results showed that GA has significantly improved the SVM classification by achieving 0.927 of f-measure.
doi:10.11591/ijece.v11i1.pp900-908 fatcat:ymqkwuaswjgtdnaisg7lmfycle