A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Research on Knowledge Graph Completion Model Combining Temporal Convolutional Network and Monte Carlo Tree Search
2022
Mathematical Problems in Engineering
In knowledge graph completion (KGC) and other applications, learning how to move from a source node to a target node with a given query is an important problem. It can be formulated as a reinforcement learning (RL) problem transition model under a given state. In order to overcome the challenges of sparse rewards and historical state encoding, we develop a deep agent network (graph-agent, GA), which combines temporal convolutional network (TCN) and Monte Carlo Tree Search (MCTS). Firstly, we
doi:10.1155/2022/2290540
fatcat:hadqi6k5vbbs7oglaa2xtulu5u