PRINCIPAL DIFFERENTIAL IDEALS AND A GENERIC
INVERSE DIFFERENTIAL GALOIS PROBLEM FOR GL,

LOURDES JUAN

ABSTRACT. We characterize the principal differential ideals of a polyno-
mial ring in n? indeterminates with coefficients in the ring of differential
polynomials in n? indeterminates and derivation given by a “general”
element of Lie(GL,) and use this characterization to construct a generic
Picard-Vessiot extension for GL,,. In the case when the differential base
field has finite transcendence degree over its field of constants we provide
necessary and sufficient conditions for solving the inverse differential Ga-
lois problem for this group via specialization from our generic extension.

INTRODUCTION

Given a differential field F' and differential indeterminates Yj;, 4,7 =
1,...,n over F one writes F'{Y;;} for the ring of differential polynomials
in the Yj;, i.e., the polynomial ring F[Y110,Y111,---,Yi1,60---3 Ynn0s---]
with derivation extending the derivation on F' by D(Y] ;x) = Yjjx+1. For
convenience, denote Y; ;. by Yl(f) and Y; ;o by Y;;. Then one can extend
this derivation to the ring R = F{Y;;}[X;;] where the X;; are algebraically
independent over the differential quotient field F(Yj;) of F{Y;;} using the
formula D(X;;) = >, YieXy;. If we pass to the above quotient field F'(Yj;)
and then localize F(Y;;)[X;;] at det[X;;], we obtain the coordinate ring of
GL,, over F(Y;;) and D becomes a “general” element of Lie(GLy,).

In this paper we show that the principal differential ideals of R (i.e., the
ideals 7 = (p) with p dividing D(p)) are the differential ideals generated by
elements of the form det”[X};], with @ € N. A polynomial p that divides its
derivative is called a Darboux polynomial. Our result can then be stated as
follows:
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Theorem 1. Let R = F{Y;;}[X;;] and let p be a Darbouz polynomial in R.
Then there are ¢ € F and a € N such that p = ¢ det®[X;;]. Therefore, the
only principal differential ideals in R are those of the form T = (det®[X;]).

The proof of Theorem 1 involves some long and delicate computations
that make use of Grobner bases machinery.

Now, suppose that the field C of constants of F' is algebraically closed.
We use Theorem 1 to show that the quotient field F(Y;;)(X;;) of R is a
no-new-constant extension of F(Y;;). Similar to the above, F(Yj;)(X;;) is
the function field of GL,, over F(Y;;). This allows us to give an affirmative
answer, for the group GL,,(C), to the following

Generic Inverse Differential Galois Problem: For a connected al-
gebraic group G over C find a generic Picard-Vessiot extension of F with
differential Galois group G.

By generic extension we mean a Picard-Vessiot extension of a generic
field that contains F' and such that every Picard-Vessiot extension of F for
G in the usual sense can be obtained from the generic one by specialization.
Conversely, any such specialization will provide a solution to the inverse
differential Galois problem in the usual sense, namely, to determine, given
F and C' as above, and a linear algebraic group G over C', what differential
field extensions £ O F are Picard-Vessiot extensions with differential Galois
group G and, in particular, whether there are any.

This result is the content of:

Theorem 2. The differential field extension F(Y;;)(Xi;) D F(Y;5) is a
generic Picard-Vessiot extension of F' with differential Galois group GLy,(C).

We point out that Theorem 2 is a consequence of Theorem 1 but not
equivalent to it: the fact that F(Yj;)(X;;) D F(Y;;) is a no-new-constant
extension does not automatically give information about what the Darboux
polynomials in R are. Darboux polynomials are also interesting in other re-
lated applications such as studying the integrability of differential equations
[2, 9, 18, 16, 17, 35].

A more direct proof for Theorem 2 was pointed out to us by Michael
Singer. Singer proves that F(Yj;)(X;;) D F(Yj;) is a no-new-constant ex-
tension by showing that F'(Y;;)(X;;) is isomorphic to F(X;;). Singer’s proof
and our generalization of it to all connected linear algebraic groups will
appear in a subsequent publication [12].

Now, suppose that F' has finite transcendence degree over C' say, F' =
C(t1,...ytm)[z1,- ., 2x], where the t; are algebraically independent over C'
and the z; are algebraic over C(t1,...,t,). Consider the differential field
F(X;;) with derivation given by D(X;;) = Y, fieXe;. Let C denote its
field of constants. Let R = F{Y;;}[X;;] be the differential ring defined
above. For k > 1 let Ty denote the set of monomials in R which have total
degree less than or equal to k and which involve both the ¢; and the Xj;.
Fix a term order on the set T of monomials in the ¢; and the X;; and let
Wi (Yi;) denote the wronskian of T}, relative to that order (the order will
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only affect the wronskian by a sign). The following theorem summarizes our
specialization results:

Theorem 3. F(X;;) D F is a Picard-Vessiot extension for GL,(C) if and
only if all the wronskians Wi (Y;;) map to nonzero elements in F(X;;) via
the specialization Y;; — fi; € F.

The above condition on the wronskians means that all the sets Ty, for
k > 1, are linearly independent over C. This is in turn equivalent to the fact
that the set of all the ¢; and all the X;; are algebraically independent over C.
Unfortunately, Theorem 3 gives infinitely many conditions. We do not know
at present how to use these conditions to effectively construct solutions to
the inverse problem, and this constitutes an interesting open problem.

A specialization as in Theorem 3, however, is known to exist by a result of
C. Mitschi and M. Singer [23]. They give a constructive algebraic solution
to the inverse problem for all connected linear algebraic groups (and, in
particular, for GL,(C)) when F has finite transcendence degree over C.
An interesting direction of research in connection with the previous open
problem is to give a complete description of the solutions (isomorphic and
non-isomorphic) that may arise in this situation.

The work of Mitschi and Singer in [23] makes use of the logarithmic
derivative and an inductive technique developed by Kovacic [14, 15] to lift
a solution to the inverse problem from G/R,, where R, is the unipotent
radical of G, to the full group G. Using this machinery Kovacic proved that
it is enough to find a solution to the inverse problem for reductive groups
(observe that G/R,, is reductive). In [25], van der Put explains and partly
proves the results in [23].

In the introduction of [23] the authors briefly review previous work on
the inverse problem such as results of Bialynicki-Birula in [4], Kovacic [14,
15], Ramis [26, 27], Singer [30], Tretkoff and Tretkoff [32], Beukers and
Heckman [3], Katz [13], Duval and Mitschi [8], Mitschi [21, 22], Duval and
Loday-Richaud [7], Ulmer and Weil [33] and Singer and Ulmer [31]. A more
extensive survey on the inverse problem can be found in M. Singer’s [29].

The constructive algebraic solutions to the inverse differential Galois prob-
lem for connected linear algebraic groups that are currently available are
based on Kolchin’s Main Structure Theorem for Picard-Vessiot extensions
(see Theorem 2.1.1 below). In particular, a corollary to this theorem (see
Theorem 2.1.2) establishes that if £ D F' is Picard-Vessiot and G is, for
example, unipotent or solvable or G = GL,, or G = SL,,, then E is isomor-
phic as an F-module and as a G-module to the function field of the group
GF obtained from G by extension of scalars from C to F. Therefore, to
get a Picard-Vessiot extension E D F with group G (if it exists) one can
begin by taking E to be the function field of Gr and then the problem re-
duces to extending the derivation from F' to E in such a way that £ D F
is Picard-Vessiot for that derivation. In this paper we use this approach for
our construction.
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The idea of tackling the inverse problem by constructing generic exten-
sions is inpired by the works of E. Noether [24] for the Galois theory of
algebraic equations. Following her approach, L. Goldman in [10] introduced
the notion of a generic differential equation with group G. Goldman explic-
itly constructed a generic equation with group G for some groups. However,
after specializing Goldman’s equation, the group of the new equation ob-
tained is a subgroup of the original group. In order to solve the inverse
problem by this means, we need to keep the original group as the group
of the equation after specialization. Goldman’s generic equation for GL,, is
equivalent to Magid’s general equation of order n (Example 5.26 in [19]).

More work in the spirit of Goldman’s generic equation came some years
later in J. Miller’s dissertation [20]. He defined the notion of hilbertian
differential field and gave a sufficient condition for the generic equation with
group G to specialize to an equation over such a field with group G as well.
However, as pointed out by Mitschi and Singer in [23], his condition was
stronger than the analogous one for algebraic equations and this made the
theory especially difficult to apply for those groups that were not already
known to be Galois groups.

We use the terminology of A. Magid’s book [19]. In [19] the reader may
also find definitions and proofs of some results from differential Galois theory
that will be recalled here.

This paper contains the results of the author’s Ph.D. dissertation [11].
I wish to thank my Ph.D. advisor Andy Magid for the many valuable re-
search meetings that we had. I am also grateful to Michael Singer for many
enlightening conversations on the inverse problem.

Notation. Throughout this paper F' denotes a differential field with alge-
braically closed field of constants C'.

1. PRINCIPAL DIFFERENTIAL IDEALS IN F{Y;;}[X;;]
1.1. Darboux polynomials in F{Yj;}[Xj;].

Definition 1.1.1. Let D be a deriwation on the polynomial ring
A = k[Z1,...,Zs]. A polyomial p € A is called a Darboux polynomial if
there is a polynomial q € A such that D(p) = qp. That is, p divides D(p).

An ideal 7 of A is a differential ideal if D(Z) C Z. In particular, Z = (p) is
a principal differential ideal if p divides D(p). Hence, Darboux polynomials
in A correspond to principal differential ideals.

Let F'{Y;;} be the ring of differential polynomials in the Y;; and F'(Y;;) its
differential quotient field. By that we mean the usual quotient field endowed

with the natural derivation:
D(Q) _ D)g —pDla)
q @
for p,q € F{Y;;}, where D is the derivation on F{Yj;}.
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Consider the differential ring R = F{Yj;}[X;;] where the X;;, 1 <4,5 <
n, are algebraically independent over F'(Y;;) and derivation extending the
derivation on F'{Y;;} by a formula

n
)= YuXy;.
=1

An elementary computation shows that an element of the form p =
¢det®[X;;] with £ € F and a € N is a Darboux polynomial in R with
D(p) = (% +ad i, Yi)p. The rest of this section is devoted to showing
that all the Darboux polynomials in R are of this form.

The multinomial notation a,Z® will be used to denote a term of the form
Aoyoag 210 o 280

First, we show that there are no non-trivial Darboux polynomials in the
Y;;. For simplicity, if h(Y) € F{Y;;}, we write h'(Y') for D(h(Y")). Notice
that this is not the usual meaning A/(Y) = > h,Y*.

Proposition 1.1.2. If h(Y) € F{Y;;} satisfies h'(Y) = g(Y)h(Y) for some
g(Y) € F{Y;;} then h(Y) € F. That is, there are no non-trivial Darboux
polynomials in F{Y;;}.

Proof. Write Yj; ;. for ng(k) and order the set of subindices {ij, k}, ¢, 7,k € N,
with the lexicographical ordering. That is, {171, k1} > {i272, k2} if and only
if the first coordinates s; and s9 from the left, for s = ¢, j, k above, which
are different satisfy s; > so.

Let h(Yj;) and g¢(Y;;) be as in the hypothesis. Denote by {mn,t} the
largest subindex such that Yyt occurs in h(Y') and put

11 Oémnt
E :aayll o mnt :
Then
/ _ / a1l 04mnt 11—1ya11,1+1 QAmn,t
K(Y) = E:%Yn Yot +§ aqo11Yy) Yoo Yo
«
Yall Yamn,t_ly
+---+ AaCmntXi1 " Yot mn,t+1

a Qmn,t—1
= I (Ylla T 7Ymn,t) + ( § aaamn,tYHH T Ym;n; )Ymn,t—i—l
o

— g(YV)R(Y).

Now, for Y t+1 = Y, we have {mn,t41} > {mn,t}. Thus it may not
occur in h(Y") by the choice of {mn,t}. Also, it does not occur in hq (Y11, -+,
Yiunt). Thus, the above equation implies that Y, 41 must occur in g(Y).
Let g¢1+1(Y) be its coefficient in ¢(Y') and write

_ (o551 amn,t—1
ha(Y) =D a@umn Y- Yt
(8%
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We have
h(Y)gt41(Y) Y41 = ha(Y) Yo 141
or
h(Y)ge1(Y) = ha(Y).
But the total degree of ha(Y) is strictly less than the total degree of h(Y).
This forces h(Y) € F. O

Next, we proceed to the computations in R. The ring F[Xj;] is assumed
to be ordered with the degree reverse lexicographical order (degreviex). That
is, the set

T = {X°|X = (Xy), B = (B) €N}
of the power products in the X;; is ordered by Xi; > --- > Xy > -+ >
Xn1 > - > Xpp, and

Dot 2o Qg < D25y D i Bi

or

DGt Dy Qij = Dy > iy Bij, and the first coordinates
a;j, Bij from the right which are different satisfy au; > B;j.

X <« XP e

We will refer to the leading term of a polynomial with respect to this order
as its leading power product.
Remarks. 1.1.3 (Derivative of a power product in the X;;). Let

X = XlOéln . Xlaﬁn . ..Xglnl o X G

then

D(X®) = (Zn: Zn: a]Y> X

i=1 j=1

n n
B a1l Cay—1 ayj+1 Qnn
+ZZ(Z%Y@'€X11 X X X
i=1 j=1 £>i
Oél'+1 i'—l
DY XX X ).
£<i

1.1.4. For a given a and X* as before, we want find all the power products
X8 such that X occurs in D(Xﬁ). If that is the case, X% will appear in
D(Xﬁ) in a product of the form Y. X% By Remark 1.1.8 all such power
products are of the form

XOérs,t _ X?lll N X’strs+1 v XtO;tSi]' . X’gﬁn 'lf r<t
Xo .. .th;ts—l c Xl X G e >t
for1<r;s<n,t#r, and X® itself.

1.1.5. Let p € R. Since D(X;;) = >y, YieXyj, the total degree of p with
respect to the X;; does not change after differentiation. Therefore, if D(p) =
qp then q € F{Y;;}.
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Proposition 1.1.6. Letp € R. Writeitasp =Y, pa(Y)X, withpa(Y) €
F{Yi;}. Then for any o with po(Y) # 0, the coefficient of X* in D(p) is

SRENIS) 3 SLMOED 3) SLIERI) SN\
i=1 j=1 =1 j=1 i
where ;¢ is the exponent vector of the power product
o = { KT Xyt X X if i<
X0 .X;‘j‘fj_ ...Xijaifrl c X g >
as in Remark 1.1.4.
Proof. This is a direct consequence of Remarks 1.1.3 and 1.1.4. O

Proposition 1.1.7. Let p € R and suppose that D(p) = qp, for some q €
F{YVZ]} Then p € F[Xw]

Proof. Let p=>"_ pa(Y)X®. Then
D(p) = ) pa(¥)X" +pa(Y)D(X?)

@
= 4qp

= Y g(V)pa(¥)X"

«

By Proposition 1.1.6, for each a with po(Y) # 0 the corresponding coef-
ficient of X% in D(p) is

n o n
D(p)a = piX(Y) + pa(Y) Z Z aijyvii
i=1 j=1
n
5 3) STUNR) SIS
=1 j=1 £

Since D(p) = qp, it must be D(p)a = q(Y)pa(Y) or, equivalently,

q(Y)pa(Y) = pa( + pa Z Z azy i

i=1 j=1
n o n
2D (05 + 1) D pay (V)Y
i=1 j=1 L#3

This means that for each «, the coefficient p,(Y) of X in p divides the
expression

A Y)+ Z Z(aij +1) Zpﬂéij,z(y Yig

i=1 j=1 046
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Thus, for each a, there is u,(Y) such that

Pa(YV)ua(Y) = pL(Y) + D> > (i + 1)) pay, (Y)Y

i=1 j=1 (#i

As in the proof of Proposition 1.1.2, order the triples {ij, k}, i,75,k € N,
with the lexicographical order. Let {mn,t} be the largest subindex such that
Yot occurs in p. We have D (Y1) = Yiune41 and {mn,t + 1} > {mn,t}.

Now, for each a such that Y, occurs in po(Y) we have that Y, ¢41
will occur in p/, (Y) but not in p,(Y) or in

Z Z(aij + 1) Zpaij,e (Y)Y;‘Z

i=1 j=1 i
by the choice of {mn,t}. Therefore, it must occur in p, (Y )uq(Y). Let

pa(Y) =Y ag¥i v v

mn,t

then
Pa(Y) =D apyiit - Yo
-1 +1 mn
+ Z ag P11 Ylﬁlll Ylﬁllj’l C Y + ...

mn,t
B11 Bmn,t—1
+> a8 Bong YT Yot Vo st

S0 Yo 41 occurs in pl,(Y') only in
mn _1
Z ag Bmn,t Yﬁu e Yrgn,t’t Yin,t+1

mn _1
= (Z ag Pmn,t Ylﬁlu - 'Ymﬁn,t’t >Ymn,t+1
= ’U(Y)Ymn,ﬂ,l.

Since Yin 41 occurs in pe(Y)uq(Y) and not in po(Y') it must occur in
ua(Y). Let uq+1(Y) be the coefficient of Yy, 441 in uq(Y'). Then it has to
be

Pa (Y)ua7t+1 (Y)Ymn,t-i-l = U(Y)Ymn7t+1 :

The above equation implies that p,(Y') divides v(Y"). But this is impos-
sible since the total degree of v(Y) is strictly less than the total degree of
pa(Y'). This contradiction yields the result. O

Lemma 1.1.8. Let p € F[X;;| and suppose that there is ¢ € F{Y;;} such
that D(p) = gp. Then q is a linear polynomial in the Yi;. If § = (Bi;) is
such that XP occurs in p, then for 1 < i < n the coefficient of Yi; in q is
2?21 Bij- In particular, the sums Z?Zl Bij, for 1 <1 < n, are independent
of the choice of X8,

Proof. We have p = 3" aX¥, with ag € F.
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Thus,
D(p) = > aX’ +a3D(X")
= qp
= Z q(Y)apXP.
By Proposition 1.1.6, the coefficient of X? in D(p) is
n n n n
af+ag) Y BiYi+ Y D (B +1)) as, Y
i=1 j=1 i=1 j=1 £

Hence, it must be

9(Y)ag = aj + aﬂ(Z D BuYa+) Y (Bi+1) Zaﬁﬁ,eyw)-

i=1 j=1 i=1 j=1 £
From this,
a/ n n n n aﬁ
g(v) =L+ DD BuYu+ YD (B +1)D —a”’l Yie.
R | i=1 j=1 i P

The coefficient of Y;; in the above expression is 2?21 Bij, for 1 <4 < n.
Since this expression for ¢ is valid for any index 3, the “in particular” part
follows immediately. O

Corollary 1.1.9. Let p be as in Lemma 1.1.8. Let X* be the leading power

product of p. Let XP be any power product with non-zero coefficient in p.

Then 2?21 Bij = 2?21 ajj, for 1 <@ < mn. Thus p is homogeneous of degree
n n

Zj:l Dim1 Q-

Proof. This is an immediate consequence of the “in particular” part in

Lemma 1.1.8. U

Corollary 1.1.10. Let p € F[X;;] and suppose that D(p) = qp, for some
q € F{Y;;}. Let X be the leading power product of p, and let £ € F be its
coefficient. Then

, n o n
1=7 +ZZO@J’YM-
i=1 j=1

Proof. By Proposition 1.1.6 and since D(p) = gp, the coefficient of X in
D(p) is

W) tg=C e (3D Y+ DD (1) Y Py Vi)
i=1 j=1 i=1 j=1 0#3

The pq,;, are the coefficients of the power products Xk in p, with
@j ) 7 o, such that D(X%i*) contains an expression of the form Yy, X“. By
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Remark 1.1.4, these power products are

a1, yorstl o yas—l | ya i
et X1 Xprs X Xoneif r <t
- Q11 ats—1 ars+1 Qnn : ’
XXl et X i g

all of which violate Corollary 1.1.9 for ¢ = r and ¢ = ¢t. Therefore it must be
Pay;,, = 0, for all 1 <4,j <n; k # i. But now, substituting back in (1), we

see that
n n
lg="0+0) ) iV
i=1 j=1
Hence,

, n n
q= Z‘FZZO@]’Y&-

i=1 j=1
O

Our next step in order to show that the Darboux polynomials p € R have
the desired form will be to show that such a p is not reduced with respect
to det[X;;]. For that we will show that the leading power product of p is a
power of the leading power product of det[X;;]. First, we have

Lemma 1.1.11. Let p € F[X;j] be such that D(p) = qp,q € F{Yj;}. Let
X< be its leading power product. Then a;; = 0 for j # n — i+ 1 and
Qin—it1 >0, 1<i<n. That is, X = Xf‘ﬁ”X;Z’Z—ll s XOnt

nl

Proof. To prove that o;; = 0 for j # n —i+ 1 we first show that a;; = 0 for
ji>n—k+1,i>k 2 <k <n. Indeed, for k = 2 we have j > n — 1, so
j=mn and

n—1

D(X®) = app D Vo X7+ Xt Xomn =t
k=1
Since ¢ has no Y;; with ¢ # j, each term in D(X®) containing such a Yj;

must be cancelled. In particular we need to cancel the terms containing

a1l a’jn“‘l ann—1

m
for 1 < j < n —1 above. For that we can only use the derivatives of power
products of the form
Xnlj —
Xon.. x et @ty yanetl | yann—1 ! < n.
K14 n nl nt nn ’

But these are all strictly greater than X (the leading power product of p),
and they may not occur in p. As a consequence, it has to be ay, = 0. Now
let k > 2 be such that o;, = 0 for ¢ > k. Then

X =

(o5 S R Ak —1,n .. Ak on—1 Q41,1 L. Ak41,n—1 .. Qn,n—1
Xll kal,n Xk,nfl XkJrl,l chJrl,nfl Xn,n—l
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and
a ain+1 Qp—1, —1 An,n—1
D(X?) = Oék;—1,n( E Y1 X000 X "'Xk—l,nn ...Xn’f;gl
i<k—1
XS ap—1n—1 ain+1 An,n—1
+ Z Ve X7t X5 X X > +...

i>k—1
Likewise, we need to cancel all the terms in D(X®) that contain Yj_; ;,
for ¢ # k — 1. In particular, we need to cancel

v a1l ain+1 ap—1,n—1 Qnn—1
Yk—l,lel e in T Xk—l,n e Xn,nfl ’

for i < k — 1. For that we can only use the power products of the form

X Oh—1,8i —

a1l a;p—1 ain+1 akfl,l"'l akfl,n_l Qn,n—1
)(11 ”.X’MZ in"l ”'Xk—l,ﬁ .”Xk’—l,n ”'Xn,nfl ,

fori < k—1.

But all of them are strictly greater than X and cannot occur in p. Thus,
it has to be a1, = 0. Since this argument is valid for any k& > 2, it follows
that ay, = 0, for 2 < k < n. This makes the statement that «;; = 0 for
j>n—k+1,4i>k, true for k = 2.

Now assume that k is such that o;; =0 for j >n -k +1,¢ > k. So

X =

arr |, Qin . Xk,n—k+1 v Xh+1,1 Xk+1ln—k+1 On on—k+1
Xll Xln Xk,n—k—H Xk+171 Xk+1,n—k+1 n,n—k+1
and for i > k
) - a1 a1n Qg n—k+1+1 Qi n—k+1—1 O n—k+1
Qin—k+1Yii X7 - X" 'Xk,n_k+1 - 'Xz‘,n—k:+1 o 'Xn,n—k+1

occurs in D(X®). Thus we need to cancel it. For that we can only use the
derivatives of power products of the form

X Yijk =
an o x % e @nkn L el @ik Tl e @nn ke
Xll ij Xk,nfk+1 XZ] Xi,nkarl n,n—k+1

with j <n —k+1 since ay; = 0 for all j > n —k+1 by hypothesis. But all
such power products are strictly greater than X< and therefore they cannot
occur in p. This forces a; 41 = 0 for ¢ > k. We can repeat this process
until £ =n and get a;; =0 forall j >n—k+ 1,71 >k, 2 <k <mn, that is,
X% =
Xt XE XS Xy X XM X

Now we show that a;; =0 for j <nmn—k+1,1<k<n-—1,i<k. The
process is analogous to what we just did. First we show that a;; = 0 for
1 < n. Indeed, for each ¢ we have for £ > 7 that

« a;1—1 ap+1 «
a“}/MXHU...Xﬂﬂ ...Xml anl
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occurs in D(X®). So, in order to cancel it, we need to use the derivatives of
power products of the form

X Yijt —

a11 ;=1 g+l ap+1 agj—1 Qn1
X XS o Xt X "'Xej X0

with j > 1, all of which are strictly greater than X“ if / < n, and for £ =n
we cannot simply have one of those since ay,; = 0 for j # 1. Thus such

power products cannot occur in p and it has to be ;1 = 0 for ¢ < n.
Let k <n —1 be such that o;; =0 for j <n —k+ 1,7 < k. We have

X =

Q1 n—k+1 L Qin | A n—k+1 L. an1
Xl,nfk+1 Xln Xk,nkarl X’nl

and for all ¢ < k, £ > i, we have that

Q1 k41 Qi n—kr1—1
Qin—ker1Yie X e X

g n—k+1t1 ani
1,n—k+1 in—k+1 X U an

ln—k+1

occurs in D(X®) and in order to cancel it we only have the derivatives of
power products of the form

X gl —

A1 k41 O n—k41—1 o+l oy Q%n—ktitl o=l an
X1 o Xgr XY D Xy X1

with j >n — k4 1since a;j =0 fori <k, j<n-—k+1

For ¢ < k, all these power products are strictly greater than X< and
therefore they cannot occur in p. For ¢ > k we cannot simply have such
power products since for £ > k, ay; = 0 if j > n — k + 1. Thus it has to be
QX n—k+1 = 0 for ¢ < k—1.

We can repeat this process until k =n —1 and get oy;; =0, j <n—k+1,
1 <k, 1 <k <n-—1. This completes the proof of the first part of the
lemma.

To prove that o;,—i+1 # 0, for all 1 <+4¢ < n, suppose that there is ¢ such
that o n—i+1 = 0 and let j # i be such that «;,—j+1 # 0. Then D(X%) will
contain

o R | o e
Q1 Y X" X0 Xy X0 if i >
or

Ve Xy, el e if i< i
a]v"‘]"'l}/ﬂXln len—J‘f'l Xj,n—j+1 nl too if i <j.

As noted above, since ¢ does not contain any Y;; with ¢ # j, we need to
cancel the terms in D(p) involving either of the above. But that is impossible
since a;; = 0 for all j and by Corollary 1.1.9 all the power products

xXPooxg P X P

in p must have 3;; = 0 for j = 1,...,n. In particular, we cannot have in p
power products of the form X®#n—i+1i as in Remark 1.1.4 U

Next we show that the exponents ag of the X in X<, the leading power
product of p, are all equal:
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Lemma 1.1.12. Let p € F[X;;] be such that D(p) = qp, q € F{Yi;}. Let

« —
X = X{n Xg2n L X o

be its leading power product. Then & pn—it1 = aip, for i@ > 1, that is, if

a = a1, then
X = (XinXop—1---Xn1)"

Proof. Let ¢ be the coefficient of X“ in p. We have
D(EXEmX5ar - Xog) =
(Zazn z+1£Yz-z>Xa1nX§${2711 : Xanl

n_ Ak,n—k+1 n
ol Y VX T X X X

k£l
a1n Qi n—it1—1 Ak n—k+t1
+£Zazn z—‘rlZY;]X s 'Xz',n—i+1 ”'Xk,n—k-i-l e 'Xk,n—i—i-l
1< k>1
D ITIITD P (75 cELENTD (INTERTED hririv ITED cpurit N
1<i k>i

! n a2 n—1 n
+ E X]. 1 X2 TL—]. * XO[ 1 .
In order to cancel

n— Ak,n—k+1 n
alnéYlanl “.Xk,n—k—:l an Xa 1 ]{,‘7&1,

above, we can only use the derivatives of the power product

XOn—k+1,k —
1

a1n—1 Ak n—k+1— anl
Xt X" X X XG0

since for j #n — k + 1 we have ay; = 0.
Let aa,,,_;,,, be the coefficient of X*t.n—k+Lk in p. Then
(2) Aoy —pg1e — —Llaap,

On the other hand, in order to cancel

Qln Ak n—k+1— Ozn
ekt 101 X1 p—pg1 - X1 --~Xk7nik+1 Xt k#1
above, the only power product that we can use is, again,
n _ @ 1 Qkn—k+1—1 «@
X%n,1  — Xl,n—k—f—l X ln . 'Xk,nkarl oo X - X nl

Xal,n—k—o—l,k’
since aq; = 0 for j # n. Thus it must be

(3) Aoy i1, — _eak,nkarl

as well.
From (2) and (3) it follows that, for k # 1, a1n, = g p—r+1-

Xanl

Xanl
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As a consequence of the above results we obtain the following expression
for ¢:

Corollary 1.1.13. Letp € F[X;;] and suppose that D(p) = qp, q € F{Yj;}.
Let X® be the leading power product of p. Let a € N be such that

XY = (XinXop—1---Xn1)"
and let £ € F be the coefficient of X* in p. Then

/ n
q = ? +a Z Yw
i=1
Proof. This is a consequence of Corollary 1.1.10 and Lemma 1.1.12. O

Corollary 1.1.14. Let p be as in Corollary 1.1.13. Then p is homogeneous
of degree na.

Proof. This is a consequence of Corollary 1.1.8 and Lemma 1.1.12 O

Lemma 1.1.12 implies that p is not reduced with respect to det[X;;]. Since
this is a key point in the proof of our main result we restate it as the following

Theorem 1.1.15. Let p € F[X;;] be such that D(p) = qp, q € F{Yi;}. Let
X be its leading power product. Then

Xa = (XlnXQ,n—l e an)a = 1p(det[X,-j])“.
Thus p is not reduced with respect to det[X;;].

Note. If f is a polynomial, Ip(f) denotes its leading power product with
respect to a given order.

O

Proof. This is just a restatement of Lemma 1.1.12.

Remark 1.1.16. Let p1,p2 € F[X;;] be two polynomials such that lp(p1) =
X% = Ip(p2). Then we can write py = fpy +1r where f € F and r is
reduced with respect to py. Indeed, since Ip(p1) = Ip(p2), we have that Ip(p2)
divides Ip(p1). So p1 is not reduced with respect to pa . We may apply the
Multivariable Division Algorithm (see [1]) to p1 and pa, to get f,r € F[X;;],
such that p1 = fpe + r, with v reduced with respect to pa and Ip(p1) =
Ip(f)lp(p2). The last equation implies that Ip(f) = 1. Hence, f € F.

We are now ready to prove our main result on the form of the Darboux
polynomials in R:

Theorem 1.1.17. Let p € F[X;;| and g € F{Y;;} be polynomials in R that
satisfy the Darboux condition D(p) = qp. Then there is a € N and ¢ € F
such that

P = l det[Xij]a
and

/ n
QZE—FCL Z;YW
1=
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Proof. Let ¢1 =Y ;- ; aYj, so that,

U

D(det[XZ-j]“) =q1 det[XZ-j]“ = (q — ?) det[Xij]“.

By Remark 1.1.16 we can write p = ¢det[X;;]* + r, with r reduced with
respect to det[X;;]*. Now,

D(p) = D(fdet[X]*) + D(r)
‘

= ('det[X;;]* + 0(qg — : ) det[X;5]* + D(r)

=/ det[Xij}a + qf det[X,-j]a - det[XZ-j]a + D(T)
= qldet[X;;]" + D(r).

On the other hand, we have

D(p) = qp
= qldet[X;;]* + qr.

Therefore, it has to be D(r) = gr. But r is reduced with respect to
det[X;;]¢. It follows, by Theorem 1.1.15, that » = 0. The statement about
the form of ¢ is just the content of Corollary 1.1.13. O

1.2. Principal differential ideals in F{Yj;}[Xj;]. As mentioned in the
introduction, if we pass to the quotient field F'(Y;;) of F{Y;;} and localize
F(Yi)[Xij] at det[X;;], we get the coordinate ring of GL,, over F'(Y;;). The
derivation D on F(Y;;)[X;;] defined above can then be seen as a “general”
element of Lie(GL,,). In particular, D is a linear combination of the basis of
Lie(GL,,) consisting of the derivations D E(ij) given by multiplication by the
matrix F(ij), with 1 in position (i,j) and zero elsewhere and the coefficient

We will show next that the result in Theorem 1.1.17 is true for any other
such element of Lie(GL,). That is, the result does not depend on the par-
ticular basis of Lie(GL,,) used.

Theorem 1.2.1. Let Dy, 1 < s,t < n, be any basis of Lie(GL,,). Define
a derivation in the ring R = F{Y;;}[Xi;] by D =3 YuDg. Let p and q be
polynomials in R that satisfy the Darboux condition D(p) = qp. Then there
is a € N and £ € F such that p = £ det[X;;]* and ¢ = K—Z/ +ady Y.

Proof. Since {Dp;;)| 1 <1i,j < n} is a basis of Lie(GL,(C)) we have

Dt = Y cstij D),
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with ¢g ;5 € C. Thus,

D = Z Y:etDst
s,t
= > Yu ) caiiDrgj)
s,t i,J
= > caiYtDrgy)

1,j St
= § ZiiDEijy,
i?j

where Z;; = Zs,t Cst,ij Yst- Now, [cst 5] is a matrix of change of basis so it is
invertible. Also the ¢y ;; are contants for D, thus the map Z;;; — Yj; 1 is a
differential bijection. In other words, the differential rings

R = F{Y;}[Xy], D
and
R = F{Z;;}|X;],D
are isomorphic and therefore we can apply Theorem 1.1.17 to R'. [

Theorem 1.2.2. Let R = F{Y;;}[X;;] be a differential ring with derivation
obtained by restriction of a general element of Lie(GL,) in the sense de-

scribed above. Then the principal differential ideals in R are those of the
form T = (det®[X;;]) for a € N.

Proof. This is a consequence of Theorems 1.1.17, 1.2.1 and of the observation
that Darboux polynomials correspond to principal differential ideals in R.
[

2. A GENERIC PICARD-VESSIOT EXTENSION FOR GL,(C)

2.1. Preliminaries on Differential Galois Theory. As before, F' is a
differential field with algebraically closed field of constants C. If £ O F'is
a differential field extension then the group of differential automorphisms of
E over F is denoted by G(E/F).

If G is a linear algebraic group over C' and K is an overfield of C we
denote by G the group obtained from G by extending scalars from C' to
K.

We will show that F(Y;;)(X;;) is a generic Picard-Vessiot extension of
F for the group GL,(C). Notice that F(Y;;)(X;;) is the function field of
Gk with G = GL,(C) and K = F(Y;;). The following two results ([19],
Theorem 5.12 and Corollary 5.29) will be used:

Theorem 2.1.1 (Kolchin Structure Theorem). Let E O F be a Picard-
Vessiot extension, let G < G(E/F) be a Zariski closed subgroup and let
T be the set of all f in E that satisfy a linear homogeneous differential
equation over K = EC. Then T is a finitely generated G-stable differential
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K -algebra with quotient field E, and if K denotes the algebraic closure of
K, then there is a G-algebra isomorphism

Ko T — K ®c C[G].

Note that C|G] denotes the affine coordinate ring of G and that the target of
the above isomorphism is the affine coordinate ring of the group Gz obtained
from G by extension of scalars from C to K.

Theorem 2.1.2. Let E D F be a Picard-Vessiot extension, let G < G(E/F)
be a Zariski closed subgroup with E¢ = F. Let T be an algebraic closure of
F, and suppose the Galois cohomology H'(F/F,G(F)) is a singleton. Let
T(E/F) be the set of all f in E that satisfy a linear homogeneous differential
equation over F. Then there are F- and G-isomorphisms T(E/F) — F|GF]
and E — F(Gp). In particular, this holds if G is unipotent or solvable, or
if G = GL,(C) orif G = SL,,.

The following characterization of Picard-Vessiot extension (see [19], Propo-
sition 3.9) will be employed:

Theorem 2.1.3. Let E DO F be a differential field extension. Then E is a
Picard-Vessiot extension if and only if:

1. E=F(V), where V C E is a finite-dimensional vector space over C;
2. There is a group G of differential automorphisms of E with G(V) 2V
and E¢ = F;
3. E D F has no new constants.
In particular, if the above conditions hold and if {y1,...,yn} is a C-basis
of V, then E is a Picard-Vessiot extension of F' for the linear homogeneous
differential operator
Y, y1,...
L(Y) — 'UJ( ?ylv 7yn)
w(yla LR yn)

where w(—) denotes the wronskian determinant and L~1(0) = V.

For the base field F(Y;;) and group G = GL,(C) we first show that
F(Yi;)(Xij) D F(Yi;) is a Picard-Vessiot extension with differential Galois
group GL,,(C'). To that end, we only need to show that F(Yj;)(X;;) D F(Y3j)
is a no-new-constant extension. Conditions 1. and 2. in Theorem 2.1.3 are
then easily verified with V' the C-span of the X;; and G = GL,(C).

2.2. Darboux polynomials and the constants of F(Y;)(Xj;). We will
show that the field of constants C of F(Y;;)(X;;) coincides with the field of
constants C' of F'. We first show (Corollary 2.2.2) that this can be reduced to
proving that the only Darboux polynomials in R are, up to a scalar multiple
in F, powers of det[X;;].

The following basic proposition (proven in [34] for A as in Definition 1.1.1)
characterizes new constants for the extension F(Y;;)(X;;) D F in terms of
Darboux polynomials:
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Proposition 2.2.1. Let p1,p2 € R = F{Yj;}[Xi;], p1,p2 # 0, be relatively
prime. Then D(g—;) =0, if and only if p1 and pa are Darboux polynomials.
Moreover, if q1,q2 € R are such that D(p1) = qip1 and D(p2) = qopa2, then
a1 = q2.

Proof. For the necessity of the condition we have

D — oD
D (ﬂ) _ D1)p2 - (p2) _
P2 25
thus D(p1)p2 — p1D(p2) = 0, that is
(1) D(p1)p2 = p1D(p2).

Since p; and p9 are relatively prime, the last equation implies that p; divides
D(p1) and po divides D(p2).

Now, let g1,92 € R be such that D(p;) = qip1 and D(p2) = qap2, respec-
tively. Then it follows from (1) that

q1pP1p2 = q2p1pP2-

Hence, ¢ = ¢o.
The proof of the converse is obvious. O

Corollary 2.2.2. Let f € F(Y;;)(Xij) be such that D(f) = 0 and assume
that f ¢ F then there are relatively prime Darbouz polynomials pi,ps € R
which satisfy the Darboux condition with respect to the same q € R (i.e.,
D(p;) = qpi, i = 1,2) and such that f = g—;. Therefore, if such relatively
prime Darboux polynomials in R do not exist, the constants of F(Y;;)(Xij;)

coincide with the constants of F.
Proof. F(Y;;)(X;;) is the fraction field of R. O
2.3. The generic extension.

Theorem 2.3.1. F(Y;;)(Xi;) D F(Yj;) is a generic Picard-Vessiot exten-
sion with differential Galois group GLy,(C).

Proof. First we need to show that F(Y;;)(X;;) D F(Y;;) is a Picard-Vessiot
extension with differential Galois group GL, (C). We will use the character-
ization of Theorem 2.1.3. We have

1. F(Yi;)(Xi5) = F(Yi)(V), where V' C F(Yj;)(Xi;) is the finite dimen-
sional vector space over C' spanned by the Xj;.

2. The group G = GL,(C) acts as a group of differential automorphisms
of F(Y;;)(X;;) with G(V) C V and F(Y;;)(X;;)¢ = F(Yi;). This fol-
lows from the fact that F'(Y;;)(X;;) is the function field of GLn(C)ij>.

3. F(Yi)(Xij) 2 F(Y;j) has no new constants. This is a consequence of
Proposition 2.2.1, Corollary 2.2.2 and Theorem 1.1.17.

Now, suppose that EF O F' is a Picard-Vessiot extension of F' with differ-
ential Galois group GL,(C). By Theorems 2.1.1 and 2.1.2, we have that in
this situation E' is isomorphic to F'(X;;) (the function field of GL,(C) ) as



PRINCIPAL DIFFERENTIAL IDEALS AND A GENERIC INVERSE... 19

a GL,(C)-module and as an F-module. Any GL,,(C) equivariant derivation
DE on F(X;;) extends the derivation on F' in such a way that

n
Dp(Xi) = Y fuXe
=1

with f;; € F. Since E D F is a Picard-Vessiot extension for GL,(C),
then so is C(fi;)(Xi;) D C(fij), the derivation on C(f;;)(X;;) being the
corresponding restriction of Dg. From this Picard-Vessiot extension one
can retrieve F'(X;;) D F by extension of scalars from C to F. In this way,
any Picard-Vessiot extension E D F with differential Galois group GL,,(C)
can be obtained from F(Yj;)(X;;) D F(Y;;) via the specialization Yj; — fi;.
This means that F(Y;;)(X;;) D F(Y;;) is a generic Picard-Vessiot extension
of F for GL,(C). O

2.4. Specializing to a Picard-Vessiot extension of F. In this section
we give necessary and sufficient conditions for a specialization Y;; — fij;,
fij € F, with C(fi;)(Xi;) D C(fij) a Picard-Vessiot extension, to exist. We
restrict ourselves to the case when F' has finite transcendence degree over
C.

Our goal is to find f;; € F such that the specialization (homomorphism)
from C{Y;;} to F given by Y;; — fi; is such that C(fi;)(X;;) D C(fi;), with
derivation given by D(X;;) = >, fieX¢j, has no new constants. We have:

Theorem 2.4.1. Let F = C(ty,...,tm)[21,...,2K] where the t; are alge-
braically independent over C and the z; are algebraic over C(t1,...,tm).
Assume that the derivation on F' has field of constants C and that it extends
to F(X;j) so that D(f® Xij) = D(f)@Xij+f@>_; fuXej on FRC[Xy].
Let C be the field of constants of F(X;j). Then C = C' if and only if the set
of all the t; and all the X;; are algebraically independent over C.

Proof. (Sufficiency) Suppose that C properly contains C. Let r be the tran-
scendence degree of C over C. Since C' is algebraically closed, r has to be at
least one.

We have the tower of fields

cccCc C(XZ]) C F(XZ])

where the transcendence degree of C C C(X;;) is n? and the transcendence
degree of C' C F(X;;) is n® +m. Since 7 > 1 the transcendence degree ¢ of
C(Xij) C F(Xij;) has to be £ < m and therefore there is an algebraic relation
among the t; over C(X;;). Let g(Xi;), fi(Xij) € C[Xy;], 9(Xij) # 0, be such

that
- fs-1(Xi5) 5, o fo(Xij)

9(X,) o(Xy)

Then
9(Xi)t* + o (Xip)t™ = + - + fo(Xy) = 0.
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Since the f;(X;;) and g(Xj;) are polynomials in the X;; with coefficients
in C, the last equation gives an algebraic relation among the ¢; and the X;;
over C.

For the necessity we only need to point out that by construction the set
of all the ¢; and all the X;; are algebraically independent over C'. O

Now to check whether the set of all the ¢; and all the X;; are algebraically
independent over C, we let T, k > 1, denote the set of monomials in both
the ¢; and the Xj;; of total degree less than or equal to k. Then the set of
all the ¢; and all the X;; are algebraically independent over C if and only if,
for each k, the set Ty is linearly independent over C.

Fix a term order on the set T of all monomials in both the ¢; and the Xj;
and let Wy denote the wronskian of the set Ty relative to that order. Then
the above condition is equivalent to the fact that Wy # 0 for £ > 1. Now
go back to C{Y;;}[X;;] and extend scalars from C to F. Let Wy (Y;;) be the
Wronskian of Ty, in F' ® C{}/U}[XZ]]

Then, the condition of Theorem 2.4.1 for finding a specialization Y;; — f;;
so that C(fi;)(Xi;) D C(fi;) has no new constants can be expressed as
follows:

Theorem 2.4.2. There is a specialization of the Y;; with no new constants
if and only if there are f;j € F' such that all the wronskians Wy(Yi;), k> 1,
map to non-zero elements under Yi; — fi;.

2.5. Specialization results for connected linear algebraic groups.
The proofs of the specialization theorems in 2.4 do not make any special use
of the fact that the group under consideration is GL,(C') and can be applied
to arbitray connected linear algebraic groups as follows:

As in the previous section, F' = C(t1,...,tm)[z1,..., 2] where the t; are
algebraically independent over C' and the z; are algebraic over C'(t1, ..., tm).
We let Y7,...,Y, denote differential indeterminates over F' and Xy,..., X,
algebraically independent elements over F(Y;).

In this section G is assumed to be a connected linear algebraic group with
function field C(G) = C(X;).

If {Dy,..., Dy} is a basis for Lie(G), Dy = )", Y; D; is a G-equivariant
derivation on F(Y;)(X;). Let D = Y | fi D;, f; € F, be a specialization
of Dy to a G-equivariant derivation on F'(X;) with field of constants C. We
have,

Theorem 2.5.1. The field of constant C of F(X;) coincides with C' if and
only if the set of all the t; and the X; are algebraically independent over C.

Now, fix an order in the set T of monomials in both the ¢; and the X; and
let Wi(Y;) be the wronskian (with respect to this order) of the monomials
in both the ¢; and the X; of degree less than or equal to & computed in
F ® C{Y;}[Xi]. Then,



PRINCIPAL DIFFERENTIAL IDEALS AND A GENERIC INVERSE... 21

Theorem 2.5.2. There is a specialization of the Y; with no new constants
if and only if there are f; € F such that all the wronskians Wi (Y;), k > 1,
map to non-zero elements under Y; — f;.

For the proofs of Theorems 2.5.1 and 2.5.2 we only need to replace the
X;; with X; , the Y;; with Y; and n? with n in the proofs of Theorems 2.4.1
and 2.4.2. O

Observe that the proofs of Theorems 2.5.1 and 2.5.2 do not use the fact
that C(X;) is the function field of G. However, this hypothesis is used in
the following theorem to show that F'(X;) D F is a Picard-Vessiot extension
with group G.

Under the hypothesis and notation of Theorems 2.5.1 and 2.5.2 we have:

Theorem 2.5.3. F(X;) D F is a Picard-Vessiot extension with Galois
group G if and only if the set of all the t; and all the X; is algebraically
independent over the field of constants C of F(X;).

Proof. First assume that F(X;) D F is a Picard-Vessiot extension. Then
the field of constants C of F(X;) coincides with C. So we can apply Theo-
rem 2.5.1 and get the result.

Conversely, if the set of all the ¢; and all the X; are algebraically indepen-
dent over C, by Theorem 2.5.1, F(X;) D F' is a no-new-constant extension.
On the other hand, F'(X;) is obtained from C(X;) by the extension of scalars:

F(X;) = qf(F®cC(Xy))
= q.f(F®cC[G])

where C[G] is the coordinate ring of G and G acts on F ®¢ C[G] fixing F.
So, G C G(F(X;)/F). Counting dimensions we get that G = G(F(X;)/F)
since C'(X;) = C(G), the function field of G. Finally, F(X;) = F(V), where
V' is the finite-dimensional vector space over C spanned by the X;. By
Theorem 2.1.3, F(X;) D F is a Picard-Vessiot extension. O

Applying Theorems 2.5.2 and 2.5.3 we also obtain:

Theorem 2.5.4. There is a specialization of the Y; such that F(X;) D F is
a Picard-Vessiot extension if and only if there are f; € F such that all the
Wi(Y;), k > 1, map to non-zero elements via Y; — f;.

2.6. An example. The previous Theorem 2.4.1 says that if there is an
algebraic relation among the set of all the ¢; and all the X;; over the field of
constants C of F'(X;;) then C properly contains C.

In this section we give an example in which a new constant is produced
from such an algebraic relation. We assume F' = C. So, in particular, the
coefficients f;; in the derivation of F' are constant. In this situation, since
the transcendence degree of F' over C' is zero, if C £ C, the condition of
Theorem 2.4.1 means that the X;; are algebraically dependent over C.

We restrict ourselves to the case n = 2 and consider the following partic-
ular dependence relation.
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Let
2
D(X;j) = Z fie X,
=1

where the f;; are such that the wronskian W7 = w(X11, X12, Xo1, X22) = 0.
That is, the X;; are linearly dependent over C. Furthermore, assume that
the linear relation among the Xj;; is such that there are (12,321,322 € C
with

(1) X11 = P12X12 + o1 X21 + B2 X022

and that Xi9, X291 and Xoo are linearly independent. In order to simplify
the computations we will also assume that det[f;;] = 0.

We want to find a, b, c € F such that p = aX19+bX91+cX99 is a Darboux
polynomial in F'[X;;], that is D(aX12+bX21+cX22) = q(aX124+bX21+cX22)
for certain ¢ € F'.

We have,

D(a X124+ b X1 + ¢ X99)

= a(funXi2 + fi2Xo2) + b(f21 X11 + f22X01) + c(f21X12 + f22X22)

= bfar X1+ (afir + cfor) X2 + bf22Xo1 + (afi2 + cfa2) Xo2

= bfa1(B12X12 + B21Xo1 + P22 X02) + (af11 + cfo1) X12 + bfaa X1
+(afia + cfar)Xoo

= (afi1 + bf21B12 + cfo1) X12 + b(fo2 + f21812) Xo1
+(afi2 + bf21822 + cfa2) Xo2

= qaXi2 + qbXo1 + qcXoo.

Therefore,

la(fi1 — q) + bf21 2 + cfa1] Xi2 + b(faz + f21812 — ¢) X1

@ + (afiz + bfa1 P22 + ¢(fo2 — q) X2 = 0.

Since we are assuming that Xi9, Xo1 and Xo9 are linearly independent
their coefficients in (2) must be equal to zero. So we have the following
homogeneous linear system in a, b, c:

(fu—qa + f21812b + forec = 0
(foo + fo1P12 —q) b =0
Jiza + Jo1822b + (foo —q)c = 0

In order for the above system to have non-trivial solutions we need that

fii—q f21B12 fa1
det 0 faz + fa1B812 — ¢ 0 = 0.
J12 J2122 Ja2 —q
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But,
fir—q f21812 fa1
det 0 fa2 + fo15812 —q 0
fi2 f21822 fa2 —q
= (fo2 + f21812 — q) det [ fl}; 4 f22f2i q ]

= (fa2 + fa1512 — q)(det[fi;] — (Z f“)q +¢?)

= 0.
This gives either

(3) foo + fo1812 —q=10

or
2

(4) det[f] = (3 fi)a+a* =0.
i—1

From (3)-(4) we get
(5) q = fa2 + f21512

or

S fu (52 fi)” — 4det[fy]

(6) q= 5
Since we are assuming that det[f;;] = 0, (6) becomes:
2 ..
(7) q= {%":1 fio - or

Choose g = 2?21 fi: and assume that ¢ # 0, ¢ # foo + fo1812. Then the
second equation in the system implies that b = 0 and the system becomes:

—fo2a+ for1c=0

fiza—fuie=0
If fa2 # 0 then the above system has the general solution
a= @c, where c € C.
fa2

In particular, if we take ¢ = 1 then p = f21X12 + X9 satisfies

D(}Cz;Xu + X22> = (Z fzz) (f21X12 + X22)
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On the other hand we also have that

D(det[Xy]) = (ﬁ: f) det[Xy].

Let
g %Xu + X2
det[Xij]
We have,
D(0)
(%Xm + X2
det[Xz-j]
. D(%XH + X22) det[Xij] - (%Xlz + XQQ)D(det[Xij])
B det[Xij]z
& J2 f 2
1 21
(Z fii) (EXH + X27) det[X] (EXH + Xa2) ( Z fii) det[Xi;]
_ =1 i=1
det[XZ-j]Q
= 0.

That is, 6 is a new constant in F'(X;;).

Now we show that under the restrictions that we imposed on the f;; it is
possible to find a non-zero foo.

Since we have a linear dependence relation among the X;;, the wronskian
W1 must be equal to zero. This Wronskian can be expressed, up to a sign,
as the following product of determinants:

where

A = fii+ [+ fiofa,

fla + fi1fiz + fi2f22

C = fuA+ faB+A

3finfin + 2f1nfrzfor + 2fiafor + fi + fizfor + fi1

sy
|
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D = fiuA+ foeB+ B
2f11f1z + f121f12 + f122f21 + f21f222 + 2f1af22 + f11f12
+fi2f59 + fio + fi1fi2fe2,
E = fo + fafu1 + faafor,
foo + fiafor + 12,
G = fuE+ faF+FE
= 2f5 fi1 + farf + Feaforfir + 2f30fo1 + fraf3h
IS+ f3y+ fofiy + fo2 i,
H = fpF+ fuE+F
= fofirfiz + 2fa2fo1 fr2 + +3f22fo0 + 2f12f51 + flafo
+foy + f3-

B
|

and
1 0 0 1

M(f;j) = f;ll féz ];2;1 ,};?2
C D G H

We have after simplifying using the hypothesis that det[f;;] = 0,

M(fij) = (fo2 — fu)(flaf2h — forfi2) + (foo — Fi) (fiafor — fr2f3h)

— flafor(fir — f22)® = frafar (i1 — f32)

+ fiafor (finfin + foafon — firfor = finfao + foo — fi1 + fr2for — fiafa1)

+ fiafa(funfin + foafon — flufoz — funfoo + fly — foo + flafor — frzfan).
Getting the above expression for M(f;;) took long and involved computa-
tions. We first computed the determinant directly and then we checked the
result using Dogson’s method [6, 28].

The wronskian Wy = 0 if and only if M(f;;) = 0. Now, observe that if
fi2 = 0 then f], = 0 which implies that B = 0 and D = 0 as well. Therefore
M(fij) = 0. So, if we let M(Yj;) be the differential polynomial in the Yj;
whose specialization to the f;; is M(f;;) then M(Yj;) is in the differential
ideal

7 = {det[Y}j], Y12}
= {Y11Y22 — Y12Y51, Yio}
= {Y1:Y%, Yo}

of C{Y11, Y12, Ya1, Yao}. It is easy to see that Yay is not in Z. Indeed, suppose
that

(8) Yoo =pYi1Yor +qYi2 + 1,
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where p, ¢ € C{Y11, Y12, Y21, Yoo},

r=3" [ (Y Ye)® + ;i3]

1,3

with p;, ¢; € C{Y11, Y12, Ya1, Yao}.

Now, consider the map

Y C{Y11, Yo1, Yoo} — C[Y11, Ya1, Yoo

given by 1(Y2) = Y2 and (Y3;) = 0 for 4, j # 2. Let p = ¢(p), 7 = ¥(q),
7 =1 (r). We have that 7 = 0 and (8) becomes

Yoo = 0.

which is impossible. O
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