Retrofitting strategy for building envelopes to achieve energy efficiency

Ingy El-Darwish, Mohamed Gomaa
2017 Alexandria Engineering Journal  
With the excessive energy consumption worldwide, the demand for saving strategies increases. Energy consumption in public buildings increased drastically over the last decade. Significant policy actions towards the promotion of energy-efficiency in the building sector have been developed with different intensity and structure. This study aims at proposing a retrofit strategy in an attempt to improve energy efficiency in a sample of higher educational buildings located in a hot arid climate
more » ... t). Retrofitting some of the building's envelope features can provide comfort without compromising functional needs. Comfort needs, which include thermal, visual and acoustical, can reduce energy consumption. Emphasis is placed on thermal comfort in terms of energy efficiency. Some of the important measures used in the retrofitting process of the building envelope include: external walls' insulation, windows' glazing type, air tightness (infiltration) and solar shading. The study results show that simple retrofit strategies such as solar shading, window glazing, air tightness then insulation can reduce energy consumption of an average of 33%. From the feasible envelope features' used in this study, the research provides a suggestion for design codes that maintains thermal comfort, propose a feasible strategy for retrofitting and a baseline reference specifically devised for local energy efficiency. Ó 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). . Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Please cite this article in press as: I. El-Darwish, M. Gomaa, Retrofitting strategy for building envelopes to achieve energy efficiency, Alexandria Eng. J. (2017), http:// dx.
doi:10.1016/j.aej.2017.05.011 fatcat:twsl6tgbkbcsjoceied2pzypha