Neural Network Models for Traffic Estimation in Mobile Networks in Lagos, Nigeria

Sodiq Kazeem Adetunji, Adenowo Adetokunbo, Akinyemi Lateef
2021 International Journal of Scientific Research in Science Engineering and Technology  
The network providers are now being challenged with their inability to accurate estimate and characterize traffic in a particular area, due to the increasing number of mobile communication services being rendered by the network providers Hence, this has been greatly undermining their design and planning processes and as such increasingly affected the Quality of Service(QoS).This research work addresses the traffic estimation in mobile communication network using Artificial Neural Network (ANN)
more » ... ural Network (ANN) approach using measured data collected in Lagos State,Nigeria.The Multilayer Perceptron (MLP) and Radial Basis Function (RBF) ANN techniques were used in the traffic modeling. The results of the ANN modeling showed that the Model 1 of MLP performed better than other models with Coefficient of Determination (R2) of 99%, Root Mean Square Error(RMSE) of 5.456 and Mean Bias Error(MBE) of 0.94.It is recommended that the dataset used in developing the ANN models be increased by collecting and using not more than 12months traffic data for ANN modeling .An appropriate design of the models should also be given a serious concern by choosing appropriate number of neurons at the hidden units of the neural networks .This will provide a good traffic estimation which the mobile network provider can be used in network design and planning.
doi:10.32628/ijsrset207555 fatcat:2scxvefvovar7fmqevzj2nd5y4