Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination

Qibin Zhao, Liqing Zhang, Andrzej Cichocki
2015 IEEE Transactions on Pattern Analysis and Machine Intelligence  
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank. In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we
more » ... ss these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.
doi:10.1109/tpami.2015.2392756 pmid:26353124 fatcat:fb6f6vsrtnfnpahio3pxylfufy