Massive particles in acoustic space-times: Emergent inertia and passive gravity

Mordehai Milgrom
2006 Physical Review D  
I show that massive-particle dynamics can be simulated by a weak, spherical, external perturbation on a potential flow in an ideal fluid. The effective Lagrangian is of the form mc^2L(U^2/c^2), where U is the velocity of the particle relative to the fluid and c the speed of sound. This can serve as a model for emergent relativistic inertia a la Mach's principle with m playing the role of inertial mass, and also of analog gravity where it is also the passive gravitational mass. m depends on the
more » ... . m depends on the particle type and intrinsic structure, while L is universal: For D dimensional particles L is proportional to the hypergeometric function F(1,1/2;D/2;U^2/c^2). Particles fall in the same way in the analog gravitational field independent of their internal structure, thus satisfying the weak equivalence principle. For D less or equal 5 they all have a relativistic limit with the acquired energy and momentum diverging as U approaches c. For D less or equal 7 the null geodesics of the standard acoustic metric solve our equation of motion. Interestingly, for D=4 the dynamics is very nearly Lorentzian. The particles can be said to follow the geodesics of a generalized acoustic metric of a Finslerian type that shares the null geodesics with the standard acoustic metric. In vortex geometries, the ergosphere is automatically the static limit. As in the real world, in "black hole" geometries circular orbits do not exist below a certain radius that occurs outside the horizon. There is a natural definition of antiparticles; and I describe a mock particle vacuum in whose context one can discuss, e.g., particle Hawking radiation near event horizons.
doi:10.1103/physrevd.73.084005 fatcat:gvnne7yugvcxhjj4tifuwgywsi