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Abstract—Deep Reinforcement Learning (DRL) has the po-
tential to surpass human-level control in sequential decision-
making problems. Evolution Strategies (ESs) have different
characteristics than DRL, yet they are promoted as a scalable
alternative. To get insights into their strengths and weaknesses,
in this paper, we put the two approaches side by side. After
presenting the fundamental concepts and algorithms for each of
the two approaches, they are compared from the perspectives
of scalability, exploration, adaptation to dynamic environments,
and multi-agent learning. Then, the paper discusses hybrid
algorithms, combining aspects of both DRL and ESs, and how
they attempt to capitalize on the benefits of both techniques.
Lastly, both approaches are compared based on the set of
applications they support, showing their potential for tackling
real-world problems. This paper aims to present an overview
of how DRL and ESs can be used, either independently or in
unison, to solve specific learning tasks. It is intended to guide
researchers to select which method suits them best and provides
a bird’s eye view of the overall literature in the field. Further,
we also provide application scenarios and open challenges.

Index Terms—Deep Reinforcement Learning, Evolution Strate-
gies, Multi-agent

I. INTRODUCTION

In the biological world, the intellectual capabilities of hu-
mans and animals have developed through a combination of
evolution and learning. On the one hand, evolution has allowed
living beings to improve genetically over successive genera-
tions such that higher forms of intelligence have appeared, on
the other hand, adapting rapidly to new situations is possible
due to the learning capability of animals and humans.

In the race for developing artificial general intelligence,
these two phenomena have motivated the development of two
distinct approaches that could both play an important role in
the quest for intelligent machines. From the learning perspec-
tive, Reinforcement learning (RL) shows many parallels with
how humans and animals can deal with new unknown sequen-
tial decision-making tasks. Meanwhile, Evolution Strategies
(ESs) are engineering methods inspired by how the mechanism
that let intelligence emerge in the biological world—repeatedly
selecting the best performing individuals.
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In this paper, we put RL and ESs side by side analyzing
their strength and weaknesses for sequential decision-making
tasks and shed light on their potential development directions.

The RL approach is formalized as an agent acting on
an environment that seeks to optimize an expected sum of
rewards over its trajectory [1]. Imagine playing a table tennis
game (environment) with a robot (agent). The robot has not
explicitly been programmed to play the game, but instead, it
can observe the score of the game (rewards). The robot’s goal
is to maximize its own perceived score. For that purpose, it
tries different techniques of hitting the ball (actions), observes
the outcome, and gradually enhances its playing strategy
(policy). Despite the proven convergence of RL algorithms
to optimal policies —best solutions to the problems at hand-
they face difficulties as the dimensionality of the data grows
(such as images or time series). Deep RL (DRL) algorithms [2]
attempt to resolve this by combining RL algorithms with deep
neural networks (DNNs) allowing them to tackle sequential
decision-making problems with high-dimensionality inputs.

As a contrasting approach to RL, ESs are a set of derivative-
free optimization algorithms that iteratively select individuals
of a population based on their performance in terms of an
objective function [3]. In recent years, ESs have seen a
increase in popularity and has been successfully applied to
several applications, including optimizing objective functions
for many RL tasks [4, 5]. It is imperative to see that the
parallel development of DRL and ESs indicates that each has
its advantages (and disadvantages), depending on the problem
setup. To enable scientists and researchers to choose the best
algorithm for the problem at hand, we summarized the pros
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and cons of these approaches through the development of a
comparative survey: we compared DRL and ESs from different
learning aspects such as scalability, exploration, the ability
to learn in dynamic environments and from an application
standpoint (Figure 1). We also discuss how combining DRL
and ESs in hybrid systems can leverage the advantages of both
approaches.

To date, there have been different papers summarizing dif-
ferent features of DRL and ESs. For example, derivative-free
reinforcement learning (e.g., ESs) has been reviewed in [6],
covering aspects such as scalability and exploration. A survey
related to DRL for autonomous driving is provided in [7],
and the challenges, solutions, and applications of multi-agent
DRL systems are reviewed in [8]. However, contrasting with
prior work, our paper surveys the literature with a bird’s-eye
view, focusing on the main developmental directions instead
of individual algorithms.

The rest of the paper is organized as follows: Section II
presents the fundamental architectural concepts behind RL and
ESs; Section III summarizes fundamental algorithms of RL,
DRL and ESs; Sections IV-A, IV-B, IV-C and IV-D compare
the capabilities of DRL and ESs; In Section V, we present
hybrid systems that combine DRL and ESs. Section VI
compares them from an applications’ point of view. Section
VII outlines open challenges and potential research directions.
Finally, we conclude the paper in Section VIII. The main
takeaways of each section are summarized in a concise sub-
section titled “Comparison”.

II. FUNDAMENTALS

This section covers the fundamental elements of DRL and
ESs, including formal definitions and the main algorithmic
families.

A. Reinforcement Learning

Reinforcement Learning (RL) is a computational approach
to understanding and automating goal-directed learning and
decision making [1]. The goal of an RL agent is to max-
imize the total reward it receives when interacting with an
environment (Figure 2a), which is generally modeled as a
Markov Decision Process (MDP). An MDP is defined by the
tuple (S, A, T, R), where S denotes the state space; A is the
action space; T'(s,a,s’) is a transition function that defines
the probability of transitioning from the current state s to the
next state s’ after an agent takes action a; R(s,a,s’) is the

reward function that defines the immediate reward r that the
agent observes after taking the action a and the environment
transition from s to s'.

The total return starting from time ¢ until the end of the
interaction between an agent and its environment is expressed
as

o0
Gy = Z ’Yth+k+1,
k=0

where R; and G; are random variables modeling the imme-
diate reward, r, and return obtained at time ¢ respectively,
and v € [0, 1) is a discount factor that weights the immediate
and future rewards. Value functions are the expected return of
being in a state or taking a particular action. The state-value
function v, (s) gives the expected return from state s following
policy 7,

V7™ (s) = Zﬂ(a|s) Zp(s’7 rls,a)[r +yV7(s")].

a s'.r

(1)

The action-value function (or Q-function) Q™ (s,a) is the
expected return of taking action a in state s and following
policy 7 thereafter,

Q"(s,0) = 3 p(s', s, a) [ 1o S @)@ (s ).
s’,r a’ (2)

The action selection process of an agent is governed by its
policy, which in the general stochastic case yields an action
according to a probability distribution over the action space
conditioned on a given state 7 (s, a).

There are four main RL algorithmic families:

Policy-based Algorithms. A policy-based algorithm opti-
mizes and memorizes a policy explicitly, that is, it directly
searches the policy space for an (approximate) optimal policy,
m*. Examples of such algorithms are policy iteration [9],
policy gradient [10] and REINFORCE [11]. Policy-based algo-
rithms can be applied to any type of action space: continuous,
discrete or a mixture (multiactions). However, these algorithms
generally have high variance and are sample-inefficient.

Value-based  Algorithms. A value-based  algorithm
learns a  value function, based on the state
V7 (s) or based on state and action Q7 (s, a). Then, a policy
is extracted according to the learned value function. Examples
of such algorithms are value iteration [12], SARSA [13],
Q-learning and DQN [14]. Value-based algorithms are more
sample-efficient than policy-based ones. However, under



ordinary circumstances the convergence of these algorithms
is not guaranteed.

Actor-critic-based Algorithms. Whereas the two algorithm
classes mentioned above each have their own strong and weak
points, the actor-critic approach tries to combine the strengths
of both into a single algorithmic architecture [15]. The actor is
a policy-based algorithm that tries to learn the optimal policy,
whereas the critic is a value-based algorithm that evaluates the
actions taken by the actor.

Model-based Algorithms. All of the algorithmic families
mentioned previously concern model-free algorithms. In con-
trast, model-based algorithms learn or make use of a model
of the transition dynamics of an environment. Once an agent
has access to such a model, it can use it to “imagine” the
consequences of taking a particular set of actions without
acting on the environment. Such capability enables an RL
agent to evaluate the expected actions of an opponent in
games [16, 17] and to make better use of gathered data, which
is very useful in tasks such as robot control [18]. However,
for many problems, it is difficult to produce close to reality
models.

Deep Reinforcement Learning (DRL) refers to the com-
bination of Deep Learning (DL) and RL (Figure 2b) [2]. DRL
uses deep neural networks (DNNs) to approximate one of the
learnable functions of RL. Correspondingly, there are three
main families of DRL algorithms: value-based, policy-based,
and model-based [14, 16, 19]. For example, the DNN of a
policy-based DRL agent takes the state of the environment as
input and produces an action as output (Figure 2b). The action
selection process is governed by the parameters 6 of the DNN.
The parameters selection is optimized using a backpropagation
algorithm during the training phase.

B. Evolution Strategies

Evolution Strategies (ESs) are set of a population-based
black-box optimization algorithms often applied to contin-
uous search spaces problems to find the optimal solutions
[20, 21]. ESs do not require modeling the problem as an MDP,
neither the objective function f(z) has to be differentiable
and continuous. The latter explains why ESs are gradient-
free optimization techniques. They do however require the
objective function f(x) to be able to assign a fitness value
to (i.e., to evaluate) each input z € R" such that f : R” — R,
x = f(x).

The basic idea behind ESs is to bias the sampling process
of candidate solutions towards the best individuals found so
far until a satisfactory solution is found. Samples are drawn
from a (multivariate) normal distribution whose shape (i.e., the
mean m and the standard deviation o) is described by what
are called strategic parameters. These can be modified online
to make the search process more efficient. The generic ESs
process is shown in Figure 2c and its elements are explained
below:

1) Initialization: the algorithm generates an initial population
P consisting of p individuals.

2) Parent selection: a sub-set of the population is selected to
function as parents during the recombination step.
3) Reproduction consists of two steps:

a) Recombination: two or more parents are combined to
produce a mean for the new generation.

b) Mutation: a small amount of noise is added to the
recombination results. A common way of implement-
ing mutation is to sample from a multivariate normal
distribution centered around the mean obtained from
the previous recombination step:

:l:iJrl - ./\/(m(g), 0(9)]) =m 4+ 0(9)'/\/'(0’ 1),

where ¢ is the generation index, k is the number of
offsprings, and I is the identity matrix.

4) Evaluation: a fitness value is assigned to each candidate
solution using the objective function f(z;).

5) Survivor selection: the best y individuals are selected to
form the population for the next generation. Generally, the
algorithm iterates from step 2 to step 5 until a satisfactory
solution is found.

The idea of employing ESs as an alternative to RL is not new
[22, 23, 24, 25], but recently it has seen a renewed interest
(e.g. [4, 26]).

C. Comparison

Our main takeaways of the above fundamental concepts are
as follows:

o The objective of an RL algorithm is to maximize the
sum of discounted rewards, whereas an ESs algorithm
does not require such formulation. However, the objective
for RL settings can be converted to ESs settings with a
terminal state that provides a reward equivalent to the
fitness function.

o The problem setup differs between RL and ESs. An ESs
algorithm is a black-box optimization method that keeps a
pool of multiple candidate solutions, while an RL method
generally has a single agent that improves its policy by
interacting with its environment.

o An ESs algorithm aims at finding candidate solutions that
optimize a fitness function, whereas the goal of DRL
is to keep advancing one or two function approximators
which in turn need to optimize the equivalent of the fitness
function, usually defined by the discounted return.

« The ESs approach is most similar to the policy-based DRL
approach: both aim at finding parameters in a search space
such that the resulting parameterized function optimizes
certain objectives (expected return for DRL or fitness score
for ESs). The main distinction is that ESs, unlike DRL, do
not calculate gradients nor use backpropagation.

o Value-based RL methods usually operate in discrete ac-
tion spaces while the actor-critic architecture extends this
ability to continuous action spaces. ESs can operate on
discrete or continuous action spaces by default.



TABLE I: Fundamental (Deep) Reinforcement Learning and Evolution Strategies algorithms

Algorithm Classification Action Space Memory Consumed Limitations Backprop. | Ref.

SARSA on-policy value- | discrete exponential in state and action | tackling continuous space, does not | X [1]
based RL spaces generalize between similar states

Q-learning off-policy value- | discrete exponential in state and action | tackling continuous space, does not | X [27]
based RL spaces generalize between similar states

REINFORCE| policy-based RL discrete/continuous | typically, it requires storing | data inefficiency, due to a higher vari- | v [11]

DNN parameters ance than DQN

DQN off-policy value- | discrete It requires storing DNN param- | the learning of the Q-function can suf- | v [28]
based RL eters and a replay buffer fer from instabilities [2]

CMA-ES black-box ES op- | discrete/continuous | high memory requirement for | high space and time complexity when | X [29]
timization the complete covariance matrix | dealing with large scale optimization [30]

problems
NES & | black-box ES op- | discrete/continuous | less memory usage than CMA- | data inefficiency due to gradient ap- | X [31]
OpenAI-ES timization ES proximation [32]

III. FUNDAMENTAL ALGORITHMS

Fundamental algorithms of (D)RL and ES are introduced in
this section.

A. Reinforcement Learning Algorithms

SARSA is a model-free algorithm that leverages temporal-
differences for prediction [1]. It updates the Q-value, Q(s;, at),
while following a policy. The interaction between the
agent and environment results in the following sequence
ooy Sty Qe Te41, St41,Ge4+1, - - - - the agent takes an action ay
while being in a state s;, and consequently, the environment
transitions to a state s;4; and the agent observes a reward 74 ;.
For action selection, SARSA uses e-greedy algorithm, which
selects the action with maximum Q(s;,a;) with probability
of 1 — ¢, and otherwise, it draws an action uniformly from
A. SARSA is an on-policy algorithm, that is, it evaluates
and improves the same policy that selects the taken actions.
SARSA’s update equation is

Q(st,ar) < Q(se,a¢) + Oé[rt-i-l"f'
YQ(s141, ar11) — Q(se, ar)],  (3)

where « is the learning rate.

Q-Learning [1] is similar to SARSA with a key difference:
it is an off-policy algorithm, which means that it learns an
optimal Q-value function from data obtained via any policy
(without introducing a bias). The update rule of Q-learning is

Q(st,at) + Q(s¢,ar) + Q[T(tﬂ)‘f’
7y max Q(s@+1), a+1)) — Qs ar)]. (4

Off-policy algorithms are more data-efficient than on-policy
ones, because they can use the collected data repeatedly.
REINFORCE [11] is a fundamental stochastic gradient de-
scent algorithm for policy gradient algorithms. It leverages a
DNN to approximate the policy 7w and update its parameters
0. The network receives an input from the environment and
outputs a probability distribution over the action space, A. The
steps involved in the implementation of REINFORCE are:

1) Initialize a Random Policy (i.e., the parameters of a DNN)
2) Use the policy mp to collect a trajectory 7 =
(30,&0,7“1, §1,Q01,72, ..., G, TH+1, SH+1)

3) Estimate the return for this trajectory
4) Use the estimate of the return to calculate the policy
gradient:

VoJ(0) = Er, [Viogm(als; 0)Qx(s,a)] (5

5) Adjust the weights 6 of the Policy:

0+ 0+ aVyJ(0)
6) Repeat from step 2 until termination.
Deep Q-network (DQN) [28] combines Q-learning with a
deep convolutional neural network (CNN) [33] to act in
environments with high-dimensional input spaces (e.g., im-
ages of Atari games). It gets a state (e.g., a mini-batch
of images) as input and produces Q-values of all possi-
ble actions. The CNN is used to approximate the optimal
action-value function (or Q-function). Such usage, however,
causes the DRL agent to be unstable [34]. To counter that,
DQN samples an experience replay [35] dataset D; =
{(s1,a1,72,52), ..., (8¢, at, 41, St4+1)} and uses a target net-
work that is updated only after a certain number of iterations.
To update the network parameters at iteration ¢, DQN uses the
following loss function

L’L(el) = E(s,a,r,s’) ~ U(D)

[ (’“ +ymaxQ(s',d;0;) — Q(s', a'; 90)2] ©

where ; and ; are the parameters of the Q-network and
target network, respectively; and the experiences, (s, a,r,s’),
are drawn from D uniformly.

B. Evolutionary Strategies Algorithms

The (1+1)-ES (one parent, one offspring) is the simplest ES
conceived by Rechenberg [36]. First, a parent candidate solu-
tion, X,,, is drawn according to a uniform random distribution
from an initial set of solutions, {X;,X;}. The selected parent,
X,,, together with its fitness values enter the evolution loop. In
each generation (or iteration) an offspring candidate solution,
X,, is created by adding a vector drawn from an uncorrelated
multivariate normal distribution to x,, as follows:

Xo = X, + yo,y ~ N(0,1).

If the offspring x, is found to be fitter than the parent x,, then
it becomes the new parent for the next generation, otherwise



it is discarded. This process is repeated until a termination
condition is met. The amount of mutation (or perturbation)
added to x,, is controlled by the stepsize parameter o. The
value of o is updated every predefined number of iterations
according to the well-known E)%h success rule [37, 38]: if x,,
is fitter than x,, ﬁ of the times then o should stay the same,
if X, is fitter more than - of the times then ¢ should be
increased, and otherwise it should be decreased.
The (11/ptTA)-ES was originally proposed by Schwefel [39]
as an extension to the (1+1)-ES. Instead of using one parent
to generate one offspring, it uses p parents to generate A\ off-
springs using both recombination and mutation. In the comma-
variation of this algorithm (i.e., (1/p,A)-ES) the selection of
the parents for the next generation happens solely from the
offsprings. Whereas in the plus-variation, the selection of the
parents for the next generation happens from the union of the
offsprings and old parents. The p in the name of the algorithm
refers to the number of parents used to generate each offspring.
An element (or an individual) that the (11/pTA)-ES evolves
consists of (x, s, f) where x is the candidate solution, s are
the strategy parameters that control the significance of the
mutation, and f holds the fitness value of x. Consequently,
the evolution process itself tunes the strategy parameters which
is known as self-adaptation. Thus, unlike (1+1)-ES, (11/pTA)
do not need external control settings to adjust the strategy
parameters.
Covariance Matrix Adaptation Evolution Strategies
(CMA-ES) is one of the most popular gradient-free optimisa-
tion algorithms [40, 41, 42, 43]. To search a solution space,
it samples a population, A, of new search points (offsprings)
from a multivariate normal distribution:

mf“ =m9 ¢ a(g)N(O,C(Q)) fori=1,...,\,

where ¢ is the generation number (ie., g = 1,2,3,...),
x; € R" is the i-th offspring, m and o denote the mean and
standard deviation of z, C represents the covariance matrix,
and NV(0,C) is a multivariate normal distribution. To compute
the mean for the next generation, m9tl, CMA-ES computes
a weighted average of the best—according to their fitness
values—yu candidate solutions, where p < A represents the
parent population size. Through this selection and the assigned
weights, CMA-ES biases the computed mean towards the best
candidate solutions of the current population. It automatically
adapts the stepsize o (the mutation strength) using the Cumula-
tive Stepsize Adaption (CSA) algorithm [40] and an evolution
path, p,: if p, is longer than the expected length of the
evolution path under random selection E||N(0, )], increase
the stepsize, otherwise, decrease it. To direct the search
towards promising directions, CMA-ES updates the covariance
matrix in each iteration. The update consists of two main
parts: (i) rank-1 update, which computes an evolution path
for the mutation distribution means, similarly to the stepsize
evolution path; and (ii) rank-pz update, which computes a
covariance matrix as a weighted sum of covariances of the best
1 individuals. The obtained results from these steps are used
to update the covariance matrix C' itself. The algorithms iterate

until a satisfactory solution is found (we refer the interested
reader to [43] for a more detailed explanation).

Natural Evolution Strategies (NES) While NES is similar in
many ways to the previously defined ES algorithms, the core
idea behind it relates to the use of gradients to adequately
update a search distribution [44]. The basic idea behind NES
consists of:

o Sampling: NES samples its individuals from a probability
distribution (usually a Gaussian distribution) over the
search space. The end goal of NES is to update the
distribution parameters 6 to maximize the average fitness
F(x) of the sampled individuals .

o Search gradient estimation: NES estimates a search gradi-
ent on the parameters by evaluating the samples previously
computed. It then decides on the best direction to take to
achieve a higher expected fitness.

o Gradient ascent: NES computes gradient ascent along the
estimated gradient

« Iterates over the previous steps until a stopping criterion
is met [44].

Salimans et al. [4] proposed a variant of NES for optimizing
the policy parameters 6. As gradients are unavailable, they are
estimated via Gaussian Smoothing of the objective function
F(X) which represents the expected return.

C. Comparison

Our main observations of the fundamental algorithms are:

« Both ES and on-policy RL algorithms are data inefficient:
on-policy algorithms make use of data that is generated
from the current policy and discard older data; ES discard
all but a sub-set of candidate solutions in each iteration.

o The computation requirements per iteration of ES are less
than that of DRL as it does not require backpropagating
error values.

o Value-based DRL algorithms such as DQN can be data-
efficient because they work with off-policy data. However,
they can become unstable for long horizons and high
discount factors [45].

o Policy-based RL and ES are similar in that they both
search for good policies directly.

o Table I summarizes some of the important characteristics
of the mentioned algorithms.

IV. DEEP REINFORCEMENT LEARNING VERSUS
EVOLUTIONARY STRATEGIES

The following section present a comparison between DRL
and ES concerning their ability to parallelize computations,
explore an environment, and learn in a multi-agent and dy-
namic settings.

A. Parallelism

Despite the success of DRL and ESs, they are still compu-
tationally intensive approaches to tackle sequential decision-
making problems. Parallel execution is thus an important
approach to speed up the computation [46]. Below, we look
into the rich literature for the most suitable the DRL and ES
algorithms for parallel RL tasks.
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1) Parallelism in Deep Reinforcement Learning

In parallel-RL multiple RL agents (or actors) run in parallel
to accelerate the learning process. Unlike Multi-agent RL
(Section IV-D), agents do not interact directly and run in
separate instances of the chosen environment. Each agent
gathers its own learning experience which can be shared with
other agents during the learning process to optimize a global
network (Figure 3) [52, 53]. In the remainder of this section
several Parallel-DRL algorithms are discussed.
Gorila. Nair et al. [46] presented Gorila, the first massively
distributed architecture for DRL. It consists of four major
components: actors, learners, a parameter server, and a replay
buffer (Figure 3a). Each actor has its Q-network. It interacts
with an instance of the same environment and stores the
generated experiences (i.e., a set of {s,a,r,s'}) in the replay
buffer. Learners sample from the experience replay buffer
and use DQN to compute gradients. Sampling from a buffer
reduces the correlation between data updates and the effect
of non-stationarity in the data. These gradients are then sent
asynchronously to the parameter server to update its Q-
network. After that, the parameter server updates the actors’
and learners’ Q-networks to synchronize the learning process.
A3C & GA3C. While using a replay buffer helps in sta-
bilizing the learning process, it requires more memory and
computational power and can only be used with off-policy
algorithms. Motivated by these limitations, Mnih et al. [47]
introduced the Asynchronous Advantage Actor-Critic (A3C)
as an alternative to Gorila. A3C consists of a global network
and multiple agents with their network parameters (Figure 3b).
The agents are implemented as CPU threads within a single
machine, which reduces the communication cost imposed by
Gorila. The agents interact in parallel with their independent
copy of the environment. Each agent calculates the value

and the policy gradients which are used to update the global
network parameters. This method of learning diversifies and
decorrelates data updates which stabilize the learning process.
GA3C [54] makes use of GPUs and shows better scalability
and performance than A3C.

Batched A2C & DPPO. A downside of A3c is that asyn-
chronous updates may lead to sub-optimal collective updates
to the global network. To overcome this, Batched Advantage
Actor-Critic (Batched A2C) employs a master entity (or a
coordinator) to synchronize the update process of the global
network [48]. Batched A2C tries to capitalize on the advan-
tages of both Gorila and A3C. Similar to Gorila, Batched A2C
runs on GPUs and the number of actors is highly scalable
while still running on a single machine akin to A3C and GA3C
[54]. Figure 3c presents the Batched A2C architecture. At each
time step, Batched A2C samples from the policy and generates
a batch of actions for n,, workers on n,. environment instances.
The resulting experiences are then stored and used by the
master to update the policy. The batched approach allows for
easy parallelization by synchronously updating a unique copy
of the parameters, with the drawback of higher communication
costs. Distributed Proximal Policy Optimization (DPPO) [55]
features architecture similar to that of A2C, and uses the
PPO [56] algorithm for learning.

Ape-X & R2D2. Ape-X [49] extends the prioritized expe-
rience buffer to the parallel-RL setting and shows that this
approach is highly scalable. The Ape-X architecture consists
of many actors, a single learner, and a prioritized replay
buffer (Figure 3d). Each actor interacts with its instance of the
environment, gathers data, and computes its initial priorities.
The generated experiences are stored in a shared prioritized
buffer. The learner samples the buffer to update its network
and the priorities of the experiences in the buffer. In addition,
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Fig. 4: Parallel Deep Reinforcement Learning and Evolution Strategies algorithms shown on a timeline

the learner also periodically updates the network parameters
of the actors. Ape-X’s distributed architecture can be cou-
pled with different learning algorithms such as DQN [28§]
and DDPG [19]. By incorporating value-function re-scaling
and LSTMs [57]. R2D2 [58] has a similar architecture but
outperforms Ape-X using recurrent neural network (RNN)-
based RL agents.
IMPALA. GA3C [54] suffers from poor convergence (due
to the use of an on-policy method in an off-policy setting).
IMPALA [50] corrected this with the use of V-trance. Its
architecture consists of multiple actors interacting with their
environment instances (Figure 3e). The experiences are sent
to a learner, in contrast to A3C, where gradients are commu-
nicated. The learner optimizes the policy and value functions
based on these experiences. IMPALA can support single or
multiple synchronized learners over which policy parameters
are distributed. IMPALA separates acting and learning leading
to a higher throughput. Unlike with Batched A2C, the actors
no longer need to wait for the learners to finish. Moreover,
additional machines can be added to generate more trajectories
per unit of time. The model parameters of the actors are
periodically updated by the learner. The Decoupling of the
acting and learning may however cause the policy used for
generating a trajectory to fall behind that of the learner. This
is solved by using the V-trace off-policy in the actor-critic
algorithm.
SEED. SEED [51] improves on the IMPALA system by
moving inference to the learner (Figure 3f). Consequently, the
trajectories collection becomes part of the learner and only
observations and actions are exchanged between the actors and
the learner. SEED makes use of TUPs and GPUs and shows
significant improvement over other approaches.

2) Parallelism in Evolution Strategies

ES algorithms require minimal bandwidth to scale to a large
number of workers as only scalar values are communicated
after each episode as opposed to entire gradient vectors as
seen in policy gradient DRL. In addition, ES also does not
require value function approximation while value-based DRL
does. In an attempt to capitalize on these advantages Salimans
et al. [4] proposed OpenAlI-ES, an algorithm derived from NES
(see Section III), that directly optimizes the parameters 6 of a
policy. The main feature of OpenAI-ES is the idea of shared
random seeds which means agents only have to share scalars,
leading to a drastic reduction of the bandwidth requirements.
The main steps of OpenAl-ES are displayed in Figure 5 and
operate as follows:

e Ot &
w1 w1 w1
€ € e4fy €F)
/et \ Ot <l \ Ot /S& \ St
w4 w2 w4 w2 W4 w2
N/ N s/ N Y
[N St Ot
w3 w3 w3

Ot Ot+1

w1 w1 w1
fA'FV \ €f Fi.a. V \\Fl. 4514 Fi.a '51---7 \zl..A £1.4
Ot Ot Ot O Ot+1 Ot1
w4 Worker 2 w4 w2 W4 w2
Fl.a€1.4 Fl.a .4
\ E}FV \ ' / \ ' /

St 6t Ot+1

w3 w3 w3

Fig. 5: Parallelization steps in OpenAI-ES [4]

1) sample a Gaussian noise vector, &; ~ N (0, I).

2) evaluate fitness functions, F; < F'(0;, o¢;), of workers.

3) exchange F; between the workers.

4) reconstruct ¢; using the random seeds.

5) adjust the parameters 6,1 < 0; + a-- >y Fiej, 0is
a weight vector of a DNN.

6) repeat from step 2 until termination.

Several other researchers have leveraged OpenAl-ES [4] for
their work. Conti et al. [32] proposed Novelty Search Evolu-
tion Strategy (NS-ES) algorithm. NS-ES hybridizes OpenAl-
ES [4] and novelty search (NS) —a directed exploration algo-
rithm. They also introduced two other algorithms that replace
NS with quality diversity (QD). The results show that the NS
and QD algorithms improve ES performance on RL tasks with
sparse rewards, as they help avoid local optima. Chrabaszcz
et al. [5] proposed a canonical ES algorithm parallelized
with OpenAI-ES using a random noise table. Liu et al. [59]
also followed the efficient communication strategy introduced
by Salimans et al. [4]: random seeds are shared between
workers and each worker knows what search parameter the
other workers have used. Consequently, their proposed algo-
rithm “Trust Region Evolution Strategies (TRES)” requires
extremely low bandwidth. Finally, Fuks et al. [29] proposed
Evolution Strategy with Progressive Episode Lengths which
leverages the same parallelization idea as OpenAI-ES [4].

Table II snapshot the main characteristics of the presented
algorithms in and Figure 4 shows them on a timeline.



TABLE II: Parallelized Deep Reinforcement Learning and Evolution Strategies systems

Algorithms| Architecture Experiments Limitations Ref.

Gorila replay buffer, actors, learners, and the | outperforms DQN in 41/49 Atari games | high bandwidth for communicating gradients | [46]
parameter server each runs on a sepa- | with reduced wall-time and parameters [50]
rate machine; GPU

A3C many actors each running on a CPU | outperforms Gorila on the Atari games | possibility of inconsistent parameter updates; | [47]
thread and update a global network while training for half the time large bandwidth between learner and actors; | [50]

does not make use of hardware accelerators

Batched multi-actors, a master, which synchro- | requires less training time as compared to | high variance in complex environments lim- | [48]

A2C nizes actors’ updates, and a global | Gorila, A3C, and GA3C its performance; episodes of varying length
network; GPU cause a slowdown during initialization

Ape-X multi-actors, a shared learner, and pri- | outperforms Gorila and A3C on the Atari | inefficient CPUs usage; large bandwidth for | [49]
oritized replay memory; CPU/GPU domain with less wall-clock training time | communicating between actors and learner

IMPALA multi-actors; single or multiple learn- | outperforms Batched A2C and A3C. | uses CPUs for inference which is inefficient; | [50]
ers; replay buffer; GPUs Less sensitive to hyperparameters selec- | requires large bandwidth for sending param-

tion than A3C eters and trajectories

SEED-RL | multi-actors and a single learning; | surpasses the performance of IMPALA centralized inference may lead to increase | [51]
GPU/TPU latency

OpenAl set of parallel workers; CPUs outperforms other solution on most Atari | evaluates many episodes requiring a lot of | [4]

ES games with less training: better than A3C | CPU time: 4000 CPU hours for a single ES | [5]

in 23 games and worse in 28 run

3) Comparison
Our observations about parallelizing DRL and ES are:

« Despite the additional complexity, parallelism accelerates
the execution of DRL and ES algorithms.

o Parallel DRL usually communicates network parameters
or entire gradient vectors between nodes while parallel ES
algorithms share only scalar values between workers.

o Parallel ES requires minimal bandwidth when compared
to parallel DRL.

B. Exploration

One of the fundamental challenges that a learning agent
faces when interacting with a partially known environment is
the exploration-exploitation dilemma. That is, when should the
agent try out suboptimal actions to improve its estimation of
the optimal policy and when should it use its current optimal
policy estimation to make useful progress? This dilemma has
attracted ample attention. Below, we summarize the main
exploration methods in DRL and ESs.

1) Exploration in (Deep) Reinforcement Learning

Simple exploration techniques balance exploration and ex-
ploitation by selecting the optimal action— according to the
current estimation —most of the time and a random action
on occasion. This is the case for the well-known e-greedy
exploration algorithm [1] that acts greedily with probability
1 — € and selects a random action with probability e.

More complex exploration strategies estimate the value of
an exploratory action by making use of the environment-agent
interaction history. Upper confidence bound (UCB) [60] does
that by making the reward signal, which the agent seeks to
maximize, equals the estimated value of a Q-function plus a
value that reflects the unconfidence of the algorithm about this
estimate,

rt(s,a) = r(s,a) + B(N(s)),

where N (s) represents the frequency of visiting state s, and
B(N(s)) is a reward bonus that decreases with N(s). In
other words, UCB promotes the selection of actions with high

r(s,a) (good actions) or the ones with high uncertainty (the
ones that are visited less frequently). The Thompson sampling
method (TS) [61] maintains a distribution over the parameters
of a model. To balance exploration and exploitation, TS
samples the distribution and acts greedily concerning these
samples. UCB and TS become more confident about the
optimal policy over time. Consequently, they naturally reduce
the probability of selecting exploratory actions, and therefore,
they are inherently more efficient than e-greedy.

From RL to DRL. DRL agents act on environments with
continuous or high-dimensional state-action spaces (e.g., Mon-
tezuma’s Revenge, StarCraft II). Such spaces render count-
based algorithms (e.g., UCB) and the ones that require main-
taining a distribution over state-action spaces (e.g., TS) useless
in their original formulation. To explore such challenging
environments with sparse reward signals, many algorithms
have been proposed. Generally, these algorithms couple ap-
proximation techniques with exploration algorithms proposed
for simple RL settings [62, 63, 64, 65]. Below we outline some
of the main DRL exploration algorithms.

Posterior sampling. Osband et al. [66] used randomized
linearly-parameterized value functions to extend the TS tech-
nique to DRL settings without maintaining an intractable exact
posterior update. Bootstrapped DQN [67], then, improved on
this idea by using DNNs and ensemble Q-functions. It draws
a sample at random from the ensemble Q-functions and acts
greedily with respect to this sample. Chen et al. [68] integrates
UCB with Bootstrapped DQN by calculating the mean and
variance of a subset of the ensemble Q-functions. O’Donoghue
et al. [69] combined TS with uncertainty Bellman equations
to propagate the uncertainty in the Q-values over multiple
timesteps.

Information gain. In exploration based on information gain,
the algorithm provides a reward bonus proportional to the
information obtained after taking an action. This reward bonus
is then added to the reward provided by the environment to
push the agent to explore novel (or less known) states [77].



TABLE III: Deep Reinforcement Learning exploration algorithms

Algorithm Description Experiments Ref.
Bootstrapped uses DNNs and ensemble Q-functions to explore an | outperforms DQN by orders of magnitude in terms of cumulative | [67]
DQN environment rewards
UCB+InfoGain integrates UCB with Q-function ensemble outperforms bootstrapped DQN [69]
State pseudo- | uses density models and pseudo-count to approximate | superior to DQN, especially in hard-to-explore environments [70]
count state visitation count which is used to compute the
reward bonus
VIME measures information gain as KL divergence between | improves the performance of TRPO [71], REINFORCE [11] when | [72]
current and updated distribution after an observation | added to them
ICM uses a forward dynamic model to predict states and | outperforms TRPO-VIME in VizDoom (a sparse 3D environment) [73]
measures information gain as the difference between
the predicted and observed state
Episodic curios- | uses episodic memory to form the novelty bonus outperforms ICM in visually rich 3D environments from VizDoom | [74]
ity and DMLab
Never Give Up combines both episodic and life-long novelties; en- | obtains a median human normalized score of 1344%; the first algo- | [75]
courages the agent to visit rarely visited states rithm that achieves non-zero rewards in the game of Pitfall
Agent57 uses a meta-controller for adaptively selecting the | first DRL agent that surpasses the standard human benchmark on all | [76]
right policy: ranging from purely exploratory to | 57 Atari games
purely exploitative

Bellemare et al. [70] fitted a density model to all the states
observed so far. After observing a new state, the model is
updated. The obtained density models are utilized to drive a
pseudo-count of state visitation. The pseudo-count is then used
to drive a reward bonus. Houthooft et al. [72] proposed to learn
a transition dynamic model with a Bayesian neural network.
The information gain is measured as the KL divergence
between the current and updated parameter distribution after a
new observation. Based on this information the reward signal
is augmented with a bonus. Pathak et al. [73] used a forward
dynamic model to predict the next state. The reward bonus is
then set to be proportional to the error between the predicted
and observed next state. To make this method effective, the
authors utilized an inverse model, removing irrelevant -for
the comparison- state features. Burda et al. [78] defines the
exploration bonus based on the error of a neural network
in predicting features of the observations given by a fixed
randomly initialized neural network.

Savinov et al. [74] proposed a new curiosity method that
uses episodic memory to form the novelty bonus. The bonus
is computed by comparing the current observation with the
observations in memory and a reward is given for obser-
vations that require some effort to be reached (effort is
materialized by the number of environment steps taken to
reach an observation). Tao et al. [79] estimated the intrinsic
rewards based on the distance to the nearest neighbors in a
meaningful low-dimensional representational space to gauge
novelty while combining the value-based approach with a
model-based approach. Badia et al. [75] proposed "Never give
up" (NGU), an RL agent that aims to solve hard exploration
games such as "Pitfall!". This method combines both episodic
and life-long novelties. Episodic novelty inspires an agent
to regularly return to familiar states (potentially not fully
explored) in the span of various episodes (not in the same
episode). Life-long novelty gradually down-modulates states
that become progressively more familiar across many episodes.
A Universal Value Function Approximator (UVFA) is then
used to learn separate exploration and exploitation policies

at the same time. Agent57 [76] aims to manage the tradeoff
between exploration and exploitation using a "meta-controller”
that adaptively selects a correct policy (ranging from very
exploratory to purely exploitative) for the training phase.

2) Exploration in Evolution Strategy

ES algorithms optimize the fitness score while exploring
around the best solutions found so far. The exploration is
realized through the recombination and mutation steps. Despite
their effectiveness in exploration, ESs may still get trapped in
local optima [59, 80]. To overcome this limitation, many ESs
algorithms with enhanced exploration techniques have been
proposed.

One way to extract approximate gradients from a non-
smooth objective function, F'(@), is by adding noise to its
parameter vector, 6. This yields a new differentiable function,
Fgs(0). OpenAIL-ES [4] exploits this idea by sampling noise
from a Gaussian distribution and adding it to the parameter
vector 6. The algorithm then optimizes using stochastic gradi-
ent ascent. Additionally, OpenAI-ES relays on a few auxiliary
techniques to enhance its performance: virtual batch normal-
ization [31] for enhanced exploration, antithetic sampling [81]
for reduced variance, and fitness shaping [44] for improving
local optima avoidance.

Choromanski et al. [82] proposed two strategies to enhance
the exploration of Derivative Free Optimization (DFO) meth-
ods such as OpenAI-ES [4]: (i) structured exploration, where
the authors showed that random orthogonal and Quasi Monte
Carlo finite difference directions are much more effective
than random Gaussian directions for parameter exploration;
and (ii) compact policies, whereby imposing a parameter
sharing structure on the policy architecture, they were able to
significantly reduce the dimensionality of the problem without
losing accuracy and thus speeding up the learning process.

Maheswaranathan et al. [83] proposed Guided ES: a random
search that is augmented using surrogate gradients which are
correlated with the true gradient. The key idea is to track
a low-dimensional subspace that is defined by the recent
history of surrogate gradients. Sampling this subspace leads
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Fig. 6: Deep Reinforcement Learning and Evolution Strategies exploration algorithms shown on a timeline

to a drastic reduction in the variance of the search direction.
However, this approach has two shortcomings: (i) the bias
of the surrogate gradients needs to be known; and (ii) when
the bias is too small, Guided ES cannot find a better descent
direction than the surrogate gradient. Meier et al. [84] draw
inspiration from how momentum is used for optimizing DNNs
to improve upon Guided ES [83]. The authors showed how
to optimally combine the surrogate gradient directions with
random search directions and how to iteratively approach
the true gradient for linear functions. They assessed their
algorithm against a standard ESs algorithm on different tasks
showing its superiority.

Choromanski et al. [85] noted that fixing the dimensionality
of subspaces (as in Guided ES [83]) leads to suboptimal
performance. Therefore, they proposed ASEBO: an algorithm
that adaptively controls the dimensionality of subspaces based
on gradient estimators from previous iterations. ASEBO was
compared to several ESs and DRL algorithms and showed
promising averaged performance.

Liu et al. [86] proposed Self-Guided Evolution Strategies
(SGES). This work is inspired by both ASEBO [85] and
Guided ES [83]. Further, it is based on two main ideas: lever-
aging historical estimated gradients and building a guiding
subspace from which search directions are sampled probabilis-
tically. The results show that SGES outperforms Open-Al [4],
Guided ES [83], CMA-ES and vanilla ES.

The aforementioned methods suffer from the curse of
dimensionality due to the high variance of Monte Carlo
gradient estimators. Motivated by this, Zhang et al. [87]
proposed Directional Gaussian Smoothing Evolution Strategy
(DGS-ES). It encourages non-local exploration and improves
high-dimensional exploration. In contrast to regular Gaussian
smoothing, directional Gaussian smoothing conducts 1D non-
local explorations along d orthogonal directions. The Gauss-
Hermite quadrature is then used for improving the convergence
speed of the algorithm. Its superior performance is showcased
by comparing it to many algorithms including OpenAI-ES [4]
and ASEBO [85].

To encourage exploration in environments with sparse or de-
ceptive reward signals, Conti et al. [32] proposed hybridizing
ESs with directed exploration methods (i.e., Novelty Search
(NS) [88] and Quality Diversity (QD) [89]). The combination
resulted in three algorithms: NS-ES, NSR-ES, and NSRA-ES.
NS-ES builds on the OpenAI-ES exploration strategy. OpenAl-
ES approximates a gradient and takes a step in that direction.

In NS-ES, the gradient estimate is that of the expected novelty.
It gives directions on how to change the current policy’s
parameters 6 to increase the average novelty of the parameter
distribution. NSR-ES is a variant of NS-ES. It combines both
the reward and novelty signals to produce policies that are
both novel and high-performing. NSRA-ES is an extension of
NSR-ES that dynamically adapts the weights of the novelty
and the reward gradients for more optimal performance.

3) Comparison

Our observations of this section are summarized below.

o The exploration-exploitation dilemma is still an active
field of research and there is no single algorithm that
outperforms all others.

« Thanks to the recombination and mutation, ESs algorithms
might suffer less from local optima than DRL ones.
However, novel environments with sparse and deceptive
reward signals demand more sophisticated and capable
exploration algorithms.

o ESs still face some problems when exploring, as high
dimensional optimization tasks can originate in high vari-
ance gradients estimates.

o Table III and Table IV summarize some important charac-
teristics of DRL and ESs exploration algorithms.

C. Non-Markov settings

The Markov property denotes the situation where the future
states of a process depend only on the current state and not on
events or states from the past. The degree to which agents can
observe (changes in) the environment has an impact on their
decision behavior. In certain favorable scenarios the state of
the agent in its environment might be fully observable (e.g.,
using sensors) to an extent such that the Markov assumption
holds. In other cases, the state of the environment is only
partially observable and/or the agent faces a distribution of
environments (Meta-RL).

1) Partially Observable

In many real-world applications, agents can only partially
observe the state of their environments and might only have
access to their local observations. This means agents need
to take into accent the history of observations—actions and
rewards—to produce a better estimation of the underlying hid-
den state [90, 91, 92]. These problems are usually modeled as
a partially observable Markov decision process (POMDP). Re-
searchers have addressed the POMDP problem setup through
the proposal of many RL models. One possibility is to em-



TABLE IV: Evolution Strategies exploration algorithms

Algorithm Description Experiments Ref.

OpenAI-ES adds Gaussian noise to the parameter vector, com- | improves exploratory behaviors as compared to TRPO on tasks such | [4]
putes a gradient, and takes a step in its direction as learning gaits of the MuJoCo humanoid walker

Structured complements OpenAI-ES [4] with structured explo- | solves robotics tasks from OpenAl Gym using NN with 300 parameters | [82]

Exploration ration and compact policies for efficient exploration (13x fewer than OpenAI-ES) and with near linear time complexity

Guided ES leverages surrogate gradients to define a low- | improves over vanilla ESs and first-order methods that directly follow | [83]
dimensional subspace for efficient sampling the surrogate gradient

ASEBO adapts the dimensionality of the subspaces on-the-fly | optimizes high-dimensional balck-box functions and performs consis- | [85]
for efficient exploration tently well across several tasks compared to state-of-the-art algorithms

DGS-ES uses directional Gaussian smoothing to explore along | improves on state-of-the-art algorithms (e.g., OpenAlI-ES and ASEBO) | [87]
non-local orthogonal directions. It leverages Guss- | on some problems
Hermite quadrature for fast convergence.

Iterative gradient | iteratively uses the last update direction as a surrogate | converges relatively fast to the true gradient for linear functions. It | [84]

estimation refine- | gradient for the gradient estimator. Over time this will | improves gradient estimation of ESs at no extra computational cost

ment result in improved gradient estimates. on MNIST and RL tasks

SGES adapts a low-dimensional subspace on the fly for more | has lower gradient estimation variance as compared to OpenAl- | [86]
efficient sampling and exploring ES. Superior performance over ESs algorithms such as OpenAl-ES,

Guided ES, ASEBO, CMA-ES on blackbox functions and RL tasks

NS-ES, NSR-ES, | Hybridize Novelty search (NS) and quality diversity | avoid local optima encountered by ESs while achieving higher perfor- | [32]

and NSRA-ES (QD) algorithms with ESs to improve the performance | mance on Atari and simulated robot tasks
of ESs on sparse RL problems.

ploy a recurrent structure to enable agents to consider past
observations [93, 94].

2) Meta Reinforcement Learning

Meta-RL is concerned with learning a policy that can
be quickly generalized across a distribution of tasks or en-
vironments (modeled as MDPs). Generally, a meta-learner
achieves that through two stages optimization process: first,
a meta-policy is trained on a distribution of similar tasks
with the hope of learning the common dynamics across these
tasks; then, the second stage fine-tunes the meta-policy while
acting on a particular task sampled from a similar but unseen
task distribution [95]. Examples of meta-RL tasks include:
navigating towards distinct goals [96], going through different
mazes [97], dealing with component failures [98], or driving
different cars [99].

Meta-RL can be subdivided into two categories [96]: RNN-
based [100, 101] and gradient-based learners [102, 103].
Recurrent Models (RNN-based learners). Leveraging the
agent-environment interaction history causes a stronger induc-
tive bias which leads to faster learning [99, 104]. This idea can
be implemented using Recurrent Neural networks (RNNs) (or
other recurrent models) [97, 100, 101, 105]. The RNNs can
be trained on a set of tasks to learn a hidden state (meta-
policy), then this hidden state can be further adapted given
new observations from an unseen task.

General architecture of a meta-RL algorithm is illustrated
in Figure 7 [106], where an agent is modeled as two loops,
both implementing RL algorithms. The outer loop samples a
new environment in every iteration and tunes the parameters
of the inner loop. Consequently, the inner loop can adjust
more rapidly to new tasks by interacting with the associated
environments and optimizing for maximal rewards.

Duan et al. [101] and Wang et al. [100] proposed analogous
recurrent Meta-RL agents: R? and DRL-meta, respectively.
They implemented an LSTM and a GRU architecture in which
the hidden states serve as a memory for tracking characteristics
of interaction trajectories. The main difference between both

approaches relates to the set of environments. Environments
in [100] are issued from a parameterized distribution [107]. In
contrast, those in [101] are relatively unrelated [107].

Such RNN-based methods have proven to be efficient on
many RL tasks. However, their performance decreases as the
complexity of the task increases, especially with long temporal
dependencies. Additionally, short-term memory is challenging
for RNN due to the vanishing gradient problem. Furthermore,
RNN-based meta-learners cannot pinpoint specific prior expe-
riences [97, 108].

To overcome these limitations, Mishra et al. [97] pro-

posed Simple Neural Attentive Learner (SNAIL). It combines
temporal convolutions and attention mechanisms. The former
aggregates information from past experiences and the latter
pinpoints specific pieces of information. SNAIL’s architecture
consists of three main parts: the DenseBlock, TCBlock, and
AttentionBlock. This general-purpose model has shown its
efficacy on tasks ranging from supervised to reinforcement
learning. Despite that, challenges such as the long time needed
for getting the right architectures of TCBlocks and Dense-
Blocks. [108] persist.
Gradient-Based Models. Model Agnostic Meta-Learning
(MAML) [102] realizes meta-learning principles by learning
an initial set of parameters, 6y, of a model such that taking
a few gradient steps is sufficient to tailor this model to a
specific task. More precisely, MAML learns 6 such that for
any randomly sampled task, 7, with a loss function, L, the
agent will have a modest loss after n updates:

b0 = ez £ (130 )

where UZ(8) refers to an update rule such as gradient descent.

Nichol et al. [109] proposed Reptile a first-order meta-
learning framework, that is considered to be an approximation
of MAML. Similar to first-order MAML (FOMAML), Reptile
does not calculate second derivatives, which makes it less com-
putationally demanding. It starts by repeatedly sampling a task,
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Fig. 7: Schematic of Meta-reinforcement Learning; illustrating
the inner and outer loops of training [106]

then performing N iterations of stochastic gradient descent
(SGD) on each task to compute a new set of parameters. Then,
it moves the model weights towards the new parameters.

3) Meta Evolution Strategies

Gajewski et al. [110] introduced “Evolvability ES”, an
ES-based meta-learning algorithm for RL tasks. It combines
concepts from evolvability search [111], ESs [4], and MAML
[102] to encourage searching for individuals whose imme-
diate offsprings show signs of behavioral diversity (that is,
it searches for parameter vectors whose perturbations lead
to differing behaviors) [111]. Consequently, Evolvability ES
facilitates adaptation and generalization while leveraging the
scalability of ESs [110, 112]. Evolvability ES shows a compet-
itive performance to gradient-based meta-learning algorithms.
Quality Evolvability ES [112] noted that the original Evolv-
ability ES [113] can only be used to solve problems where
the task performance and evolability align. To eliminate this
restriction, Quality Evolvability ES optimizes for both -task
performance and evolability- simultaneously.

Song et al. [114] argue that policy gradient-based Model
Agnostic Meta Learning (MAML) algorithms [102] face sig-
nificant difficulties when estimating second derivative using
backpropagation on stochastic policies. Therefore, they intro-
duced ES-MAML, a meta-learner that leverages ES [4] for
solving MAML problems without estimating second deriva-
tives. The authors empirically showed that ES-MAML is
competitive with other Meta-RL algorithms. Song et al. [115]
combined Hill-Climbing adaptation with ES-MAML to de-
velop noise-tolerant meta-RL learner. The authors showcased
the performance of their algorithm using a physical legged
robot.

Wang et al. [116] incorporated an instance weighting mech-
anism with ESs to generate an adaptable and salable meta-
learner, Instance Weighted Incremental Evolution Strategies
(IW-IES). During parameter updates, higher weights are as-
signed to offsprings that contain more new knowledge. The
weights are assigned based on one of the two proposed
metrics: instance novelty an instance quality. Comapred to ES-
MAML, IW-IES proved competitive for robot navigation tasks.

The characteristics of meta-RL make it particularly suited
for tackling the sim-to-real problem: simulation provides pre-
vious experiences that are used to learn a general policy, and
the data obtained from operating in the real world fine-tunes
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Fig. 8: Multi-agent Reinforcement Learning Overview [119]

that policy [117]. Examples of using Meta-RL to train physical
robots include: Nagabandi et al. [98] built on top of MAML a
model-based meta-RL agent to train a real legged millirobot;
Arndt et al. [118] proposed a similar framework to MAML
to train a robot on a task of hitting a hockey puck; and Song
et al. [115] introduced a variant of ES-MAML to train and
quickly adapt the policy commanding a legged robot.

4) Comparison

We list our observation of this section below:

o Meta-RL is generally a two-stage optimization process:
the first, it optimizes on a task distribution level, and the
second, fine-tunes for a specific task.

o There are two main approaches for Meta-RL: gradient-
based and recurrent models.

e There are many challenges in gradient-based Meta-RL
methods, such as estimating first and second-order deriva-
tives, high variance, and high computation needs.

o ES-based meta-RL attempts to address the limitations

of gradient-based meta-RL; however, ES-based meta-RL

itself faces a different set of challenges such as the sample
efficiency.

Meta-RL is particularly useful and advantageous in the

sim-to-real paradigm. The simulation would provide the

experience needed, and generalize a behavior allowing the
model to properly act in the real world.

D. Learning in a multiagent setting

A multi-agent system (MAS) is a distributed system of
multiple cooperating or competing agents (physical or virtual),
working towards maximizing their own objectives within a
shared environment [120]. Each of the agents is equipped
with a decision-making model which can be distributed either
homogeneously or heterogeneously over the entire group. Cur-
rently, multi-agent systems form one of the leading research
areas of Artificial Intelligence due to their wide applicability.
Virtually any application that can be partitioned and paral-
lelized can benefit from using multiple agents.

1) Multi-agent Reinforcement Learning

An MAS can be combined with DRL to form a Multi-
agent Deep Reinforcement Learning (MADRL) system which
addresses sequential decision-making problems for multiple
agents sharing a common environment (Figure 8). MADRL
agents are trained to learn a certain behavior through interac-
tion with the environment and optionally with other agents. In



TABLE V: Gradient-based Meta Reinforcement Learning.

Algorithms Description Experiments Ref.

DRL-meta trains an RNN on a distribution of RL tasks. The | outperforms other benchmarks on the bandits’ problems; properly | [100]
RNN serves as a dynamic task embedding storage. | adapts to invariances in MDP tasks
DRL-meta uses the LSTM architecture

RI? trains an RNN on a distribution of RL tasks. The | comparable to theoretically optimal algorithms in small-scale | [101]
RNN serves as a dynamic task embedding storage. | settings. It has the potential to scale to high-dimensional tasks
R? uses the GRU architecture

SNAIL combines temporal convolution and attention mech- | outperforms LSTM and MAML [97]
anisms

MAML given a task distribution, it searches for optimal | outperforms classical methods such as random and pretrained | [102]
initial parameters such that a few gradient steps are | methods
sufficient to solve tasks drawn from that distribution.

Reptile similar to first-order MAML on-par with the performance of MAML [109]

TABLE VI: Evolution Strategies for Meta Reinforcement learning

Description Experiments ref.

Evolvability ES combines concepts from evolvability search, ES, and | competitive with MAML on 2D and 3D locomotion tasks [110]
MAML to enable a quickly adaptable meta-learner

ES-MAML uses ESs to overcome the limitations of MAML competitive with policy gradient methods; yields better adaptation | [114]

with fewer queries

IW-IES uses NES for updating the RL policy network pa- | outperforms ES-MAML on set of robot navigation tasks [116]

rameters in a dynamic environment

fact, Tampuu et al. [121] show that DRL agents can perform
better in a gaming application, when trained against other
dynamic DRL agents instead of a static algorithm. These
systems can become quite complex, as agents will observe not
only the consequences of their actions, but also the behavior
of other agents.

Since the environment and the reward states are affected by

the joint actions of all agents, the single-agent MDP model
cannot be directly applied to MARL systems, as they do not
adhere to the Markov property. The Markov (or Stochastic)
games (MG) [122] framework comes as a generalization of the
MDP that captures the entanglement of the multiple agents.
There are several important properties to be considered when
considering MADRL systems. In the following section we will
discuss each of these properties and their resulting impact on
the overall system.
Setup: Cooperative vs Competitive In a cooperative game,
also known as a team problem, the agents seek to maximize
a common reward signal by taking actions that favor their
outcome, while taking into account their effect on other agents.
Most contemporary applications are based upon a cooperative
setup. Examples of this scenario include foraging, exploration
and warehouse robots. The main challenge for the cooperative
setup is termed as the structural credit assignment problem
[123]: which members of the team should receive credit for
a favorable reward signal, and which members should be
penalized. Due to the complex dynamics between agents and
the action history, it can be non-trivial to determine whose
actions were beneficial to the group reward.

Contrary, in a competitive game, agents receive different
reward signals based on the overall outcome of the joint
actions. In this setup, certain actions might be beneficial to
one set of agents while being indifferent or disadvantageous
for the other agents.

Control: Centralized vs Decentralized Another important

distinction to make for MARL systems is the centralized ver-
sus decentralized control approach. In the case of centralized
control, there exists a single control entity that governs the
decisions of all agents based on all available joint actions,
joint rewards and joint observations. While this approach
enables optimal decisions, it quickly becomes computationally
infeasible as the number of agents within a system grows.
Additionally, this creates the risk of a single point of failure
since the whole system could fail if the central controller
breaks.

The decentralized approach does not make use of a central
controller and relies on agents to make decisions indepen-
dently, based on the information available to them locally.
Decentralized systems can be subdivided into two categories:
"A decentralized setting with networked agents", and "A fully
decentralized setting" [124]. The former setup involves agents
which can communicate with other nearby agents and use the
shared information to optimize their actions. In the latter sce-
nario, agents make independent decisions without information
exchange. While this means that no explicit messages can be
sent, it is still possible to influence the behavior of other agents
by affecting their reward as seen in Sartoretti et al. [125].
While the decentralized approach can provide more scalability
and robustness, it also significantly increases the complexity
of the system as there is no central entity that has knowledge
of and can control the state of each robot. An interesting
future research direction might be semi-centralized MADRL
systems in which one or more central entities possess partial
information of a set of agents. Alternatively, it is possible to
alternate techniques between different phases of the design.
Chen [126] proposed a system with centralized training and
exploration and decentralized execution which can increase
inter-agent collaboration and sample efficiency.

Challenges in Multi-agent Reinforcement Learning Moving
from a single-agent to a multi-agent environment brings about



new complex challenges with respect to learning and evaluat-
ing outcomes. This can be attributed to several factors, mainly
including the exponential growth of the search space and
the non-stationary of the environment [127]. In the following
section the additional challenges for MADRL applications will
be discussed.

Non-stationarity:- In a MADRL system, agents are
learning concurrently and their actions repeatedly re-
shape their shared surroundings, resulting in a highly dy-
namic environment. This highly dynamic aspect is of-
ten referred to as non-stationarity. Therefore, the entire
setup becomes non-stationary from a single agent per-
spective. In other words, P(s'|s,a1,...,aN,T1,...,TN) #
P(s|s,a1,...,an, 7, ..., 7 ), where any m; # . Conse-
quently, the convergence of well-known algorithms such as Q-
learning can no longer be guaranteed as the Markov property
assumption of the environment is violated [28, 128, 129].
Many papers in the literature that attempt to address the non-
stationarity problem. citetcastaneda2016deep proposed two
algorithms: Deep loosely coupled Q-network (DLCQN) and
deep repeated update Q-network (DRUQN). DLCQN modifies
an independence degree for each agent based on the agent’s
negative rewards and observations. The agent then utilizes this
independence degree to decide when to act independently or
cooperatively. DRUQN tries to avoid policy bias by updating
the value of the action inversely proportional to the probability
of selecting that action. Diallo et al. [130] proposed a multi-
agent concurrent DQN algorithm able to converge in a non-
stationary environment. Lenient-DQN conceived by Palmer
et al. [131] utilizes leniency with decaying temperature values
for adjusting the policy updates sampled from the experience
replay memory to deal with the non-stationarity caused by
concurrent learning.

Scalability:- One way to deal with the non-stationarity
problem is to train the agents in a centralized fashion and let
them act according to a joint policy. However, this paradigm
gives rise to the scalability challenge of multi-agent systems.
As the number of agents increases, the state and action spaces
grow exponentially, a phenomenon known as "combinatorial
complexity" [132, 133, 134]. Centralized training and de-
centralized execution is a paradigm to develop multi-agent
systems that try to find a balance between the challenges
imposed by scalability and non-stationarity. Several value-
based or actor-critic algorithms have been proposed such as
Value Decomposition Networks (VDN) [135], QMIX [136],
MADDPG [137] and COMA [138], CTEDD [139].
Modeling Multi-agent Reinforcement Problems The follow-
ing section will summarize the common approaches of model-
ing and solving multi-agent reinforcement learning problems.

independent-learning:- Under this approach each agent con-
siders other agents as part of the environment and consequently
each agent is trained independently [129, 140, 141]. This ap-
proach does not suffer from the scalability problem [141, 142],
but it makes the environment non-stationary from each agent’s
perspective [143]. Furthermore, it conflicts with the usage
of experience replay that improves the DQN algorithm [28].

Foerster et al. [142] used importance sampling and the age
of the samples of the replay memory using fingerprinting, to
stabilize experience replay in DQN in MARL.

fully observable critic:- A way to deal with the non-
stationarity of a MARL environment is by leveraging an actor-
critic approach. Lowe et al. [137] proposed a multi-agent deep
deterministic policy gradient (MADDPG) algorithm, where
the actor policy accesses only the local observations whereas
the critic has access to the actions, observations, and target
policies of all agents during training. As the critic has global
observability, the environment becomes stationary even though
the policies of other agents change. A number of extensions
to MADDPG has been proposed [144, 145, 146, 147].

value function decomposition:- Learning the optimal action-
value function in fully cooperative MARL settings is challeng-
ing. To coordinate the agents’ actions, learning a centralized
action-value function, Q.¢, is desirable. However, when the
number of agents is large, learning such a function is challeng-
ing. Independent-learning (where each agent learns its action-
value function, ();) does not face such a challenge, but it also
neglects interactions between agents, which results in sub-
optimal collective performance. Value function decomposition
methods try to capitalize on the advantages of these two
approaches. It represents Q:,; as a mixing of (; that is
conditioned only on local information. Value-Decomposition
Network (VDN) algorithm assumes that Q;,; can be additively
decomposed into NQ; for N agents. QMIX [136] algorithm
improves on VDN by relaxing some of the additivity con-
strains and enforcing positive weights on the mixer network.

consensus:- refers to the problem setup where agents are
allowed to communicate with their neighbors to reach an
agreement. The information is shared locally—between neigh-
boring agents— preserving scalability even as the number of
agents increases [148, 149].

learn to communicate:- Cooperative environments may al-
low agents to communicate. In such settings, the agents
can learn a communication protocol to achieve their shared
objective more optimally [150, 151]. Foerster et al. [152]
proposed two algorithms, Reinforced Inter-Agent Learning
(RIAL) and Differentiable Inter-Agent Learning (DIAL), that
use deep networks to learn to communicate. RIAL is based
on Deep Recurrent Q-Network with independent Q-learning.
It shares the parameters of a single neural network between
the agents. In contrast, DIAL passes gradients directly via
the communication channel during learning. While a discrete
communication channel is used in realizing RIAL and DIAL,
CommNet [153] utilizes a continuous vector channel. Over
this channel, agents obtain the summed transmissions of
other agents. Pesce and Montana [154] introduced memory-
driven multi-agent deep Deterministic policy gradient (MD-
MADDPG). In it, the agents use shared memory as a com-
munication channel: upon taking an action, an agent reads the
shared memory and writes a response to it.

Partial observability:- Foerster et al. [152] introduced a
deep distributed recurrent Q-network (DDRQN) algorithm
based on a long short-term memory network to deal with



POMDP problems in the multi-agent setting. Gupta et al.
[155] extended three types of single-agent RL algorithms
based on policy gradient, temporal-difference error, and actor-
critic methods to the multi-agent systems domain. Their work
shows the importance of using DRL with curriculum learning
to address the problem of learning cooperative policies in
partially observable complex environments. The deep recurrent
policy inference Q-network (DRPIQN) was conceived by
[156] to address the problem of partial observability in multi-
agent systems.

We refer the interested reader to the following survey papers
for a more in-depth discussion on the topic of multi-agent
reinforcement learning: Hernandez-Leal et al. [128] provide
a comprehensive survey on the non-stationarity problem in
MARL; OroojlooyJadid and Hajinezhad [143] scope their
survey to include the papers that study decentralized MARL
models with a cooperative goal; Da Silva and Costa [157]
focus on transfer learning for MARL systems; Althamary et al.
[158] provide a survey on using multi-agent reinforcement
learning methods for vehicular networks; a survey on MARL
from the perspective of challenges and applications is intro-
duced by Du and Ding [159]; a selective overview of theories
and algorithms is presented in [124]; a survey and critique of
MADRL is given in [133]; and OroojlooyJadid and Hajinezhad
[143] provide a review of cooperative MADRL.

2) Multi-agent Evolution Strategies

As previously mentioned, many challenges are still faced
when solving multi-agent DRL tasks. These make it diffi-
cult for such systems to always perform as expected [160].
Throughout this section, we will present the literature using
ESs for multi-agent learning tasks. Many of the proposed
methods, consist of hybridizing DRL and ESs in such situ-
ations.

Hiraga et al. [161] developed robotics controllers based
on ESs for managing congestion in robotic swarms path
formation using LEDs. The performed experiment covered
a swarm of robots, each having seven distance sensors, a
ground sensor, an omnidirectional camera, and RGB LEDs.
An artificial neural network (three-layered neural network)
represents the controller of the robot, having as inputs: the
distance sensors, ground sensors and the cameras, and as
outputs: the motors and LEDs controls. (u, A)-ES is utilized to
optimize the weights of the controller. A copy of the controller
is implemented on N different robots, before being evaluated
and assessed depending on the swarm’s performance. Another
similar approach was proposed in [162] for building a swarm
capable of cooperatively transporting food to a nest and
collectively distinguishing between foods and poisons. Hiraga
et al. [162] developed a controller for a robotic swarm using
CMA-ES, aiming to automatically generate the behavior of the
robots. The performed experiment covered a swarm of robots
with each having eight distance sensors, an omnidirectional
camera, an artificial neural network controller (three-layered
neural network), and two motors (left and right). The sensors
constitute the inputs to the first layer and the ANN output
controls the motors. CMA-ES is utilized to optimize the

weights of the controller. The controller is then copied to
the N robots and evaluated accordingly. The fitness function
combines a positive reward (when transporting foods) with a
negative one (when transporting poison). Several experiments
proved that the performance grows exponentially with the
increase in the number of robots, and that the developed
controllers are scalable.

Shopov and Markova [163] combined ESs and multi-agent
DRL (Deep Q-Networks) for Sequential Games and show-
cased the model’s efficiency as compared to Classical multi-
agent reinforcement training with e-greedy. The experiment
performed by Shopov and Markova [163] aims to optimize
the behaviour of a group of autonomous agents (the pursuers)
in a map. Tests were performed on two cases: one map
with almost no obstacles and another with many obstacles
(increased probability of falling into the local minimum).
Using ESs on the latter yielded better performance.

Tang et al. [164] proposed an adversarial training multi-
agent learning system, in which a quadruped robot (protago-
nist) is trained to become more agile by hunting an ensemble
of robots that are escaping (adversaries) following different
strategies. An ensemble of adversaries is used, as each will
propose a different escape strategy, thus improving agility
(agility refers to coordinated control of legs, balance control,
etc.). Training is done using ESs and more specifically by
augmenting CMA-ES to the multi-agent framework. There
are two steps for training: An outer loop which iteratively
trains the protagonist and adversaries, and an inner loop for
optimizing the policy of each. Policies are represented by feed-
forward neural networks and are optimized with CMA-ES.
This method was compared to MADDPG and MATD?3 (state-
of-the-art actor critic-based multi-agent RL), and proved to
be more successful in learning agile locomotion behaviors.
Additionally, leveraging an adversarial approach outperformed
methods with no adversarial training.

Chen and Gao [165] proposed a predator-prey system which
leverages ESs (OpenAI-ES, CMA-ES). It consists of having
multiple predators trained to catch prey in a certain time frame.
The predator controllers are homogeneous, and are represented
by neural networks which parameters are optimized with ESs
(openAI-ES, CMA-ES) and Bayesian Optimization. The NN
has three inputs (the inverse of the distance from the predator
to the other nearest predator, the angle between the orientation
of the predator and the direction of the prey relative to the
predator, the distance between the predator itself and the prey),
one hidden layer and two outputs for controlling the angular
velocities of the two wheels. As for the prey’s controller, it
follows a simple fixed evasion strategy: having computed a
danger zone map, the prey navigates towards the least dan-
gerous locations. After performing various experiments, the
predators showcased a successful collective behavior: moving
following a formation and avoiding collisions. In the final
experiments, CMA-ES outperformed Bayesian Optimization
and OpenAlI-ES, as it can better handle noise. The system
seemed to be successful in real life as well (not just in
simulation).



Master
Update policy networks

T | |
[ o3 ] ) 0] Update value decomposition network
f \

vilvalvt A8y By

=Sl
=l B

Policy Networks g Value "
Q i lecomposition
Observations
States ||t T network
Team reward

Fig. 9: PES-VD overview

Actor M

In a multi-agent setting, agents often receive a shared
reward for all the agents, making it harder to learn proper
cooperative behaviors. [160] thus proposed to use Parallelized
ESs along with a Value Decomposition Network (useful for
identifying each agent’s contribution to the training process)
for solving cooperative multi-agent tasks. Figure 9 below
is an overview of the overall PES-VD algorithm. PES-VD
consists of two phases. First, the policies of each agent are
represented by a neural network with parameters 6, optimized
using Parallelized ES. Each agent thus identifies its actions
independently following its policy and by interacting with its
environment. In a second place, seeing how the reward is
common to the whole team, a Value Decomposition Network
is used to compute the fitness for each of the different policies.
Finally, PES-VD is implemented in parallel on multiple cores:
M workers evaluate the policies and compute the gradients of
the Value Decomposition Network and a master node collects
the data and updates the policies and the Value Decomposition
Network accordingly. PES-VD was compared with gradient-
based (REINFORCE, Actor-Critic, DQN, VDN) and gradient-
free methods(Random search [166] and OpenAI-ES) in two
different multi-agent environments: Multi-Agent Particle En-
vironment (MAPE) [167], and StarCraft Multi-Agent Chal-
lenge (SMAC) [168]. The proposed method seemed promising
for both benchmarks and outperformed gradient-based and
gradient-free methods in the Cooperative Navigation task.

Rais Martinez and Aznar Gregori [169] assess the perfor-
mance of ESs (CMA-ES, PEPG, SES, GA and OpenAI-ES)
for multi-agent learning in the swarm aggregation task. Swarm
aggregation was first proposed in [170], and was solved using
DRL. In this problem, the robots controllers are represented by
a Neural network with 2 hidden layers. It has 8 infrared sensors
and 4 microphones for inputs and 2 wheels and a speaker
as output. Each robot in the swarm runs the same network,
thus maintaining collective behaviour. The results showcased
that ESs were successful in training the aggregation behavior.
CMA-ES achieved the best solution for small swarms (5,10
and 20 robots) and SES for larger ones (40 robots). As for
OpenAlI-ES, it needed fewer generations (less training time)
as compared to other methods, while however requiring more
execution steps.

Similarly, various researchers proposed multi-agent solu-
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Fig. 10: CEM-RL [174]: a hybrid algorithm that combines
cross-entropy method with (Twin) Deep Deterministic Gradi-
ent Policy [175].
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tions leveraging ES. Fan et al. [171] used ESs on different
multi-agent UAV swarm combat scenarios. Aznar et al. [172]
developed a swarm foraging behavior using DRL and CMA-
ES.

3) Comparison

Here we summarize our observations of this section

o Training under a multi-agent setting is more challenging
than training a single RL agent for a plethora of reasons.
There are usually two types of agents in MARL: cooper-
ative and competitive agents. Algorithms can make use of
a centralized or decentralized framework and will act in a
partially or fully observable environment.

o New algorithms such as PES-VD [160] propose a direct
solution to some of the main challenges of MADRL.
PES-VD uses a Value Decomposition Network for solving
structural credit assignment problems.

o Using ESs for multi-agent learning is still a growing field
with a large potential as to the many advantages ESs can
bring to concepts such as “collective robotic learning"
and “cloud robotics" [173] with its improved approach to
parallelism [4].

V. HYBRID DEEP REINFORCEMENT LEARNING AND
EVOLUTION STRATEGIES ALGORITHMS

Although DRL and ES have the same objective—optimizing
an objective function in a potentially unknown environment—
they have different strengths and weaknesses [176, 177].
For example, DRL can be sample efficient thanks to the
combination of RL and deep learning; while ES have robust
convergence properties and exploration strategies. The hybrid
approach combines DRL and ES to get the best of both worlds.
Although the idea is not new [178], hybridizing DRL and
ES has gained momentum, driven by the recent success of
DRL and ES [4, 179]. We describe in the following a few
population-guided parallel learning schemes that enhance the
performance of RL algorithms.

Pourchot and Sigaud [174] addressed the problem of policy
searching by proposing CEM-RL: a hybrid algorithm that
combines a cross-entropy method (CEM) with either the Twin
Delayed Deep Deterministic policy gradient (TD3) [175] or



the Deep Deterministic Policy Gradient DDPG [19] algorithms
(Figure 10). The CEM-RL architecture consists of a population
of actors that are generated using CEM, and of a single
DDPG or TD3 agent. The actors generate diversified training
data for the DDPG/TD3 agent, and the gradients obtained
from DDPG/TD3 are periodically inserted into the population
of the CEM to optimize the searching process. The authors
showed that CEM-RL is superior to CEM, TD3 [175], and
Evolution Reinforcement Learning (ERL) [180]: a hybrid
algorithm that combines a DDPG agent with an evolution-
ary algorithm. Shopov and Markova [163] merged Deep Q-
Networks and ES to develop a hybrid agent that is able to
discover high-performing reinforcement-learning policies in
sequential games.

Houthooft et al. [181] devised a hybrid RL agent, Evolved
Policy Gradients (EPG), that, in addition to the policy, opti-
mizes a loss function. EPG consists of two optimization loops:
the inner loop uses stochastic gradient descent to optimize the
agent’s policy, while the outer one utilizes ES to tune the
parameters of a loss function that the inner loop minimizes.
Thanks to this ability to fine tune the loss function according
to the environment and agent history, EPG can learn faster
than a standard RL agent.

Diqi Chen and Gao [182] proposed a hybrid agent to
approximate the Pareto frontier uniformly in a multi-objective
decision-making problem. The authors argued that despite the
fast convergence of DRL, it cannot guarantee a uniformly
approximated Pareto frontier. On the other hand, ES achieve
a well-distributed Pareto frontier, but they face difficulties
optimizing a DNN. Therefore, Diqi Chen and Gao [182]
proposed a two-stage multi-objective reinforcement learning
(MORL) framework. In the first stage, a multi-policy soft
actor-critic algorithm learns multiple policies collaboratively.
And, in the second stage, a multi-objective covariance ma-
trix adaptation evolution strategy (MO-CMA-ES) fine-tunes
policy-independent parameters to approach a uniform Pareto
frontier.

The last layer of a DNN is harder to train than the ones
preceding it [183]. De Bruin et al. [184] used a hybrid
approach to train and fine-tune a DNN control policy. Their
approach consists of two main steps: (i) learning a state
representation and initial policy from high-dimensional input
data using gradient-based methods (i.e., DQN or DDPG); and
(ii) fine-tuning the final action selection parameters of the
DNN using CMA-ES. This architecture enables the policy to
surpass in performance its gradient-based counterpart while
using fewer trials compared to a pure gradient-free policy.

Several other researchers have also proposed solutions hy-
bridizing ES and DRL for various applications. For example,
Song et al. [185] proposed ES-ENAS, a neural architecture
search (NAS) algorithm for identifying RL policies using
ES and Efficient NAS (ENAS); Ferreira et al. [186] used
ES to learn agent-agnostic synthetic environments (SEs) for
Reinforcement Learning.
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Fig. 11: Deep Reinforcement Learning and Evolution Strate-
gies applications.

A. Comparison

Here we summarize our observations of this section

o DRL suffers from temporal credit assignment, sensitivity
in the hyperparameters’ selection and might suffer from
more brittle exploration due to its unique agent setting,
while ES has low data efficiency and struggle with large
optimization tasks

« Combining both approaches can help address some of
these identified challenges

o Some hybrid methods proposed throughout the literature
seem to outperform the use of each method on its own

« Hybridizing DRL and ES is still a relatively new field of
research.

VI. APPLICATIONS

The following section provides a comparison of DRL and
ESs from an application perspective. While both have been
applied to a wide array of applications, DRL still seems to
receive more attention than ES within the scientific com-
munity (searching Google Scholar for “Deep Reinforcement
Learning” results in 6380 hits, while only 1480 for “Evolu-
tion/Evolutionary Strategies*). Figure 11 showcases the most
prevalent application domains for both DRL [190] and ES.
The data for Figure 11 has been collected by querying Google
Scholar for papers titled with “Deep Reinforcement Learning”
or “Evolutionary Strategies” in conjunction with any of the key
words listed in Table VIII.

A. Deep Reinforcement Learning applications

Gaming. Video games such as the Atari games [191] are
excellent testbeds for DRL algorithms, given their well-defined
problem setting and virtual environment. This makes evalua-
tion safe and often faster than real-world experiments. [192].

There have been two important triumphs for DRL with
respect to perfect information games. First, in 2015, Mnih
et al. [193] developed an algorithm that could learn to play
different Atari 2600 games at a superhuman level using only
the image pixels as input. This work paved the way for DRL
applications trained on high-dimensional data based only on
the reward signal. Soon after, in 2016, Silver et al. [194]
developed AlphaGo, the first program ever to beat a world
champion in Go. Instead of the handcrafted rules often seen in



TABLE VII: Hybrid algorithms highlights

Algorithm Description Experiments Ref.
CEM-RL combines a cross-entropy method and Twin Delayed Deep | outperforms CEM, TD3, multi-actor TD3, and Evolutionary | [174]
Deterministic policy gradient [175] to find robust policies | Reinforcement Learning [180]
Evolved Policy | uses gradient descent and CMA-ES for policy and loss | achieves faster learning than policy gradient methods and pro- | [181]
Gradients (EPG) function optimization, respectively vides qualitatively different behavior from other popular meta-
learning algorithms
MO-CMA-ES integrates a multi-policy soft actor-critic algorithm with | exceeds other algorithms such as the hypervolume-based [187], | [182]
a multi-objective covariance matrix adaptation evolution | radial [188], Pareto following [188], and Deep Neuroevolu-
strategy to approach uniform Pareto frontier tion [189] algorithm on computing the Pareto frontier
Fine-tuned DRL combines CMA-ES and DQN or DDPG to train and fine- | surpasses gradient-based methods while requiring less iterations | [184]
tune a DNN control policy than gradient-free ones

TABLE VIII: Search terms used to estimate application dis-
tribution in different industries for DRL and ES

Industry field |(Search terms

Gaming game, games, gaming, playing, play, mahjong, atari, tetris,
soccer

Robotics robotics, “motion control”, robots, “robot navigation”, as-
sembly

Finance finance, financial, trading, portfolio, stock, price, liquida-

tion, hedging, banking, trader, cryptocurrency, underpric-
ing
Computer Vision |“image detection”, “face recognition”, “object detection”,
visual tracking”, “object tracking”,
“target tracking”, “face tracking”,“trajectory tracking”
network, routing, communications, wireless, 5g, LTE,
MAC, “access control”, “network slicing”, excluding:
“neural network”

» G

“object localization”,

Communications

Healthcare healthcare, treatment, cancer, medical, blood, patient, di-
agnostic, diagnosis, clinical, infection, disease

Energy microgrid, “energy trading”, “energy management”,
“power grid”, “power control”, “building energy”, “electric
power”, “energy storage”, “heating energy”

Transportation  |transportation, transport, “vehicle routing”, ride-hailing,
“traffic signal”, "car-following", fleet, “autonomous vehi-
cle”, “traffic light”, "vehicle driving", "autonomous brak-
ing"

Edge Computing |“edge computing”, “edge caching”, “edge-assisted”, MEC,
offloading

Civil structural, pavement, stormwater

Engineering

chess programs, AlphaGo consisted of neural networks trained
using a combination of Supervised Learning (SL) and RL.
Only a year later, this achievement was triumphed by Silver
et al. [195], whose AlphaGo Zero program beat its predecessor
AlphaGo. AlphaGo Zero was based solely on RL, omitting
the need for human data. More recent works have also been
successful in imperfect information games which, unlike Go
and Atari games, only let agents observe part of the system.
In OpenAl Five [196], agents were able to defeat the world’s
esports champions in the game of Dota2, while AlphaStar
[197] attained one of the highest rankings in the complex
real-time strategy game of Starcraft II. [46, 50, 70, 75] further
examined DRL algorithms’ ability to scale, parallelize, and
explore using Atari games. Lastly, an extensive survey on DRL
in video games has been composed by Shao et al. [192].

Robotics. Robotics is another domain which forms a promi-
nent testbed for DRL algorithms [198, 199]. DRL can provide
robots with navigation, obstacle avoidance and decision mak-

ing capabilities, by mapping sensory data directly to actual
motor commands [200, 201]. In some cases this has enabled
robots to learn complex movements such as jumping or
walking [202, 203]. Tai et al. [204] proposed a mapless motion
planner which relies on training in simulation, after which,
physical agents were able to navigate unknown environments
without fine-tuning. While most works involved simulation,
Gu et al. [173] showed that DRL can be used to learn complex
robotics 3D manipulation skills from scratch on real-world
robots and further reduced training time by making agents
pool their policy updates. Haarnoja et al. [203] demonstrated
that using DRL, one can also achieve stable quadrupedal
locomotion on a physical robot within a reasonable time
without prior training. For an in-depth review of the use of
DRL for robot manipulation, we refer the interested reader to
[198, 199].

Finance. DRL also finds applications in trading [205, 206]
and investment management [207], including cryptocurrency
[208]. Moody and Saffell [209] built a DRL agent for stock
trading using raw financial data as the DNN input. Carapuco
et al. [210] described a system for short-term speculation in
the foreign exchange market, based on DRL. Wu et al. [211]
proposed adaptive stock trading strategies leveraging DRL. A
more recent DRL work by Lei et al. [212], adaptively selects
between historical data and the changing trend of a stock,
depending on the current state.

Computer Vision Computer vision problems often involve
high-dimensional data, lending itself to DRL solutions. For
instance, DRL can greatly improve the efficiency of image
classification and object localization and recognition, by fo-
cusing on the most promising regions, using a so called
"glimpse window’ as seen in Mnih et al. [213]. Caicedo and
Lazebnik [214] proposed using a DQN for object localization
by transforming a bounding box to identify the most specific
location using a top-down analysis. Kong et al. [215] took
things a step further by introducing a collaborative multi-
agent DRL system with inter-agent communication to search
for joint objects (e.g. person riding a bike). 11l and Ramanan
[216] used DRL in order to learn policies for motion planning,
deciding where to look in the frame, when to reinitialize and
when to update the appearance model.

Communications. Upcoming networks such as the 5G net-
work, emphasize the need for efficient dynamic and large-
scale solutions [217]. DRL has been emerging as an effective



tool to tackle various problems and challenges within the
field of networking [218]. For example, Wang et al. [219]
applied a DQN to automatically optimize data transmission
and reception in a multi-wireless-channel access problem.
Ye and Li [220] developed a similar system for vehicle-to-
vehicle communication. The optimal transmission bitrate can
change over time. DRL can dynamically optimize the bitrate
based on the quality of the last segment, the current buffer
state [221, 222], rebuffering times, and other channel statistics
[223, 224].

Proactive caching can greatly reduce the number of trans-
missions over the network. However, deciding which content
to caches is not trivial. Researchers have used DQNs to
determine which information to keep in a cache based on ob-
servations of the channel state [225], cache state [226], request
history [227, 228] and available base stations [229, 230, 231].

Offloading can improve performance and reduce battery
consumption of edge devices. However, the response time of
a busy server might be unacceptably long. Thus, the time-
varying channel conditions of a server need to be taken
into account when offloading. DQNSs can observe the channel
quality [232, 233], task queues, remaining file size [234], and
the servers’ capacities [235] to offload optimally.
Healthcare. Recently DRL has gained traction for applications
such as personalized healthcare treatments [236]. Liu et al.
[237] proposed the first DRL framework for estimating the
optimal dynamic treatment regimes from observational medi-
cal data using DRL to estimate the long term value function. A
large number of the applications is dedicated to medical image
processing to extract features or detect anatomical objects
from 2D/3D MRI or CT images [238, 239, 240, 241]. Liu
et al. [242] present different DRL models which can detect
lung cancer using data collected from medical IoT devices.
Furthermore, DRL has also been applied in order to inquire
patients for symptoms and diagnose diseases based on clinical
data [243, 244, 245].

Energy. Within the energy sector, smart grids make intelligent
decisions with respect to electricity generation, transmission,
distribution, consumption and control. DRL has been used in a
variety of settings to tackle electric power system decision and
control problems [246], such as in the context of microgrids
[247] or building energy optimization [248, 249].

Transportation Congestion, safety and efficiency are impor-
tant aspects of transportation. DRL is often used for adaptive
traffic signal control to reduce waiting times [250],[251],
[252]. Chen et al. [253] expanded upon this and conceived the
first DRL control system which scales to thousands of traffic
lights. Wang and Sun [254] developed a MADRL framework
to prevent ’bus bunching’ and streamline the flow of public
transport. Manchella et al. [255] proposed a model-free DRL
algorithm which packs ride-sharing passengers together with
goods delivery to optimize fleet utilization and fuel efficieny.

B. Evolution Strategy applications

ES are also used for a myriad of applications as shown in
Figure 11b. The main categories are discussed in the section

below.

Gaming similarly to DRL, gaming represents one of the main
testbeds for ES. Most of the literature on ES reviewed in this
survey test their algorithms on Atari games [4, 5, 29, 32, 256,
257, 258, 259]. These are considered to be challenging as they
present the agents with high dimensional visual inputs and a
diverse and interesting set of tasks that were designed to be
difficult for humans players [14].

Robotics The robotics field is also leveraged for test-
ing ES. Simulations are mostly performed in the Mujoco
simulator[260] or in PyBullet [261] [4, 59, 80, 86, 256, 262,
263, 264]. The different tasks in these simulators are used
to benchmark algorithms in the continuous control domain.
Several other researchers tested their algorithms on real robots:
Song et al. [115] adapted their proposed method for meta-
learning using ES on real robots. Additionally Chen and Gao
[165] adapted their Predator-prey method to hardware as well:
one phase considered that the environment is fully observable,
while another covered a partially observable environment.
Communications Different methods are proposed throughout
the literature that used ES for computer networks. Pérez-
Pérez et al. [265] used Evolution Strategy with NSGAII
(ESN) to approximate the Pareto frontier of the mobile adhoc
network (MANETS). Krulikovska et al. [266] used ES for the
routing of multipoint connections. Additionally, they proposed
methods for improving ES. Nissen and Gold [267] used ES for
designing a survivable network, keeping in mind economics
and reliability. Shahhoseini and Torkzadeh [268] proposed
a multi-constraints QoS routing algorithm. He et al. [269]
analyzed the data characteristics of wireless sensor network
(WSN), and proposed a method for fault diagnosis of WSN
based on a belief rule base (BRB) model.Srivastava and Singh
[270] used ES for solving the the total rotation minimization
problem (TRMP) in directional sensor networks. Srivastava
et al. [271] presented an ES method for solving the Cover
scheduling problem in wireless sensor networks (WSN-CSP).
Gu and Potkonjak [272] proposed an ES method to search for a
network configuration able to produce and stabilize responses
of a Physical Unclonable Functions (PUFs).

Edge Computing Emadi et al. [273] proposed the use of
CMA-ES for optimizing task scheduling in cloud computing.
Mai et al. [274] proposed a hybrid RL and ES method
for real-time task assignment among fog servers, aiming to
lower to a minimum the computation latency. Shukla et al.
[275] proposed a hybrid RL and ES approach for solving the
problem of high latency between healthcare IoTs, end-users,
and cloud servers.

Finance Korczak and Lipinski [276] presented a portfolio
optimization algorithm using ES. Rimcharoen et al. [277],
Sutheebanjard and Premchaiswadi [278] proposed the Adap-
tive and (1+1) ES methods for predicting the Stock Exchange
of Thailand index movement. Bonde and Khaled [279] pre-
dicted the changes (increase or decrease) of stock prices for
different companies using ES and Genetic Algorithms. Pai
and Michel [280] proposed ES with hall of fame (ES-HOF)
for optimizing long—short portfolios with the 130-30-strategy-



based constraint. Pai and Michel [281] used multi-objective ES
for futures portfolio optimization. Yu [282] proposed an ES
method for the multi-asset multi-period portfolio optimization.
Sable et al. [283] proposed an ES approach for predicting the
short time prices of stocks. Sorensen et al. [284] applied meta-
learning algorithms to ES for stock trading.

Civil Engineering ES have also often been used in civil
engineering. They are used for meeting the demands of
structural design optimization tasks. Hasangebi [285] stud-
ied the computational performance of adaptive ES in large-
scale structural optimization. Additionally, Mitropoulou et al.
[286] showcased that ES can be considered as efficient tools
for both single and multiobjective design optimization of
structural problems. [287] proposed an ES integrated parallel
optimization algorithm meant to minimize the total member
weight in each test steel frame. [288] used ES to adapt the
battery recharge strategy to changing environments. Ogidan
and Giacomoni [289] applied an enhanced nondominated
sorting evolution strategy (eNSES) for sanitary sewer overflow
(SSO) optimization problems. Hajebi et al. [290] proposed
an iterative optimization technique with CMA-ES for the
subsurface inverse profiling of a 2-D inhomogeneous buried
dielectric target.

C. Comparison
Here we summarize our observations of this section.

« Both DRL and ES algorithms have found adoption in a
substantial number of different applications.

« DRL-based solutions seem to excel in situations that
require scalable and adaptive behavior.

o ES’s applications are less widespread and mostly centered
around specific use cases such as structural optimization.

o Although DRL and ES are used quite extensively in
robotics’ tasks, moving from simulation to reality is still a
major gap. Most of the studies discussed the simulations
performed but few actually implemented it on actual
robots.

VII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although DRL and ESs have proven their worth in many
Al fields, there are still many challenges to be addressed. We
briefly list some of them in the sequel.

A. Deep Reinforcement Learning

Sample Efficiency. DRL agents require a large number of
samples (i.e., interactions with environments) to learn good-
performing policies. Collecting so many samples is not al-
ways feasible: image training a delivery robot to navigate
its surrounding from scratch [7]. Although this problem has
been tackled in different ways (e.g., transfer learning, meta-
learning) more innovation and research are still needed [291,
292]. One promising research direction to tackle this problem
is model-based RL [291]. However, getting an accurate model
of the environment is usually hard.

Exploration versus exploitation. The exploration versus ex-
ploitation dilemma is one of the most prominent problems

in RL. Beyond classical balancing approaches such as e-
greedy [1], Upper Confidence Bound (UCB) [1], and Thomp-
son Sampling [1], recent breakthroughs enable the exploration
of novel environments. For example, Osband et al. [67]
observed the importance of temporal correlation and proposed
the bootstrapped DQN; and Bellemare et al. [70] used density
models to scale UCB to problems with high-dimensional input
data. However, as DRL is proposed to tackle ever more
complex environments, the exploration versus exploitation
dilemma still poses a challenge that requires innovation.
Sparse reward. A reward signal guides the learning process
of an RL agent. When this signal is sparse learning becomes
much harder. Although, different solution approaches have
been proposed (e.g., reward shaping [1], curiosity-driven meth-
ods [73], curriculum learning [293], hierarchical learning [294]
and inverse RL [295]), learning with sparse rewards still
represents an open challenge.

Simulation-to-reality gap. Despite the benefits of simulations,
they give rise to the sim-to-real gap: policies that are learned
in simulations often do not work as expected in the real world.
Different techniques are being adapted to mitigate the effect
of this gap. For example, [296, 297] randomized the simulated
environment to produce more generalized models. Rao et al.
[298] noted that such randomization requires manually speci-
fying which aspects of the simulator to randomize. Therefore,
they used domain adaptation (i.e., many simulated examples
and a few real ones) to train a robot on grasping tasks without
manually instrumenting the simulator. Despite such efforts, the
sim-to-real gap is still an open challenge to be addressed.
Optimizing complex systems. Optimizing the performance
of complex systems such as 5G networks requires a versatile
and advanced optimizer. DRL has the potential to optimize
such systems (e.g., Zhao et al. [299] proposed optimizing user
association and resource allocation using DDQN; and Li et al.
[300] suggested enhancing energy consumption using DQN).
However, we are still in the early stages of harnessing the
power of DRL in optimizing systems such as 5G networks.
For more detailed challenges about DRL and networking, we
refer the reader to [301].

B. Evolution Strategies

Sample Efficiency. ESs can provide more robust policies
as compared to DRL; however, they are even less sample
efficient, as they work with full-length episodes [302, 303],
and they do not use any type of memory [302]. Approaches
to improve sampling in ESs include Importance Mixing
[302, 304] and Sample Reuse. However, this line of research is
still fresh and is attracting a lot of attention from the scientific
community.

Noise handling. While ESs tolerate some noise due to their
randomized nature, noise renders their computations more
difficult and causes their performance to approach random
walk [21, 305, 306]. Several solutions have been proposed to
improve noise handling in ESs, such as re-evaluation of points
[305] and adapting the population size during fitness evalu-
ation to improve the signal-to-noise ratio [306]. A detailed



summary of the challenges related to ESs, such as differential
evolution and swarm optimization, is presented in [21].

VIII. CONCLUSION

Deep Reinforcement Learning (DRL) and Evolution Strate-
gies (ES) have the same objective but are fundamentally
different mechanisms. Understanding their relative strengths
and weaknesses may lead to developing an algorithmic family
that is superior to each one of them. Therefore, in this paper,
we provided the necessary background of DRL and ES and
compared them. Instead of focusing on individual algorithms,
we considered major learning aspects such as parallelism,
exploration, meta-learning, and multi-agent learning. Further,
we discussed the recent advances made in hybridizing DRL
and ES. Before discussing potential future research directions,
a comparison between DRL and ES from an application
perspective was made to show how these two are used and
the context. Finally, we believe hybridizing DRL and ES has
a high potential to drive the development of agents that operate
reliably and efficiently in the real world.
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