Monoids over which products of indecomposable acts are indecomposable

Mojtaba Sedaghatjoo
2016 Hacettepe Journal of Mathematics and Statistics  
In this paper we prove that for a monoid $S$, products of indecomposable right $S$-acts are indecomposable if and only if $S$ contains a right zero. Besides, we prove that subacts of indecomposable right $S$-acts are indecomposable if and only if $S$ is left reversible. Ultimately, we prove that the one element right $S$-act $\Theta_S$ is product flat if and only if $S$ contains a left zero.
doi:10.15672/hjms.20164518617 fatcat:ueva7325unhkjiohlpnsyf7xla