A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Protein thermal stability does not correlate with cellular half-life: Global observations and a case study of tripeptidyl-peptidase 1
[article]
2019
bioRxiv
pre-print
Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurodegenerative lysosomal storage disorder caused by mutations in the gene encoding the protease tripeptidyl-peptidase 1 (TPP1). Progression of LINCL can be slowed or halted by enzyme replacement therapy, where recombinant human TPP1 is administered to patients. In this study, we utilized protein engineering techniques to increase the stability of recombinant TPP1 with the rationale that this may lengthen its lysosomal half-life,
doi:10.1101/828509
fatcat:5ablq3enjbamvnuzdxof6cangu