Market Efficiency, Roughness and Long Memory in PSI20 Index Returns: Wavelet and Entropy Analysis

Rui Pascoal, Ana Monteiro
2014 Entropy  
In this study, features of the financial returns of the PSI20index, related to market efficiency, are captured using wavelet-and entropy-based techniques. This characterization includes the following points. First, the detection of long memory, associated with low frequencies, and a global measure of the time series: the Hurst exponent estimated by several methods, including wavelets. Second, the degree of roughness, or regularity variation, associated with the Hölder exponent, fractal
more » ... and estimation based on the multifractal spectrum. Finally, the degree of the unpredictability of the series, estimated by approximate entropy. These aspects may also be studied through the concepts of non-extensive entropy and distribution using, for instance, the Tsallis q-triplet. They allow one to study the existence of efficiency in the financial market. On the other hand, the study of local roughness is performed by considering wavelet leader-based entropy. In fact, the wavelet coefficients are computed from a multiresolution analysis, and the wavelet leaders are defined by the local suprema of these coefficients, near the point that we are considering. The resulting entropy is more accurate in that detection than the Hölder exponent. These procedures enhance the capacity to identify the occurrence of financial crashes.
doi:10.3390/e16052768 fatcat:zxla7le6hbbp7orjr24nrc4sne