Dynamics of the spin- Heisenberg chain at intermediate temperatures

O. A. Starykh, A. W. Sandvik, R. R. P. Singh
1997 Physical Review B (Condensed Matter)  
Combining high-temperature expansions with the recursion method and quantum Monte Carlo simulations with the maximum entropy method, we study the dynamics of the spin-1/2 Heisenberg chain at temperatures above and below the coupling J. By comparing the two sets of calculations, their relative strengths are assessed. At high temperatures, we find that there is a low-frequency peak in the momentum integrated dynamic structure factor, due to diffusive long-wavelength modes. This peak is rapidly
more » ... pressed as the temperature is lowered below J. Calculation of the complete dynamic structure factor S(k,w) shows how the spectral features associated with the two-spinon continuum develop at low temperatures. We extract the nuclear spin-lattice relaxation rate 1/T1 from the w-->0 limit, and compare with recent experimental results for Sr2CuO3 and CuGeO3. We also discuss the scaling behavior of the dynamic susceptibility, and of the static structure factor S(k) and the static susceptibility X(k). We confirm the asymptotic low-temperature forms S(pi)~[ln(T)]^(3/2) and X(pi)~T^(-1)[ln(T)]^(1/2), expected from previous theoretical studies.
doi:10.1103/physrevb.55.14953 fatcat:vozvy445brg4hok36vteegfbca