A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
On the almost everywhere convergence of the ergodic averages
1990
Ergodic Theory and Dynamical Systems
Let (X, 2F, v) be a finite measure space and let T:X-»X be a measurable transformation. In this paper we prove that the averages A n f(x) = (n + l)~'Y.osi^nf(T'x) converge a.e. for every / in L p (dv), \, if and only if there exists a measure y equivalent to v such that the averages apply uniformly L p (dv) into weak-L p (dy). As a corollary, we get that uniform boundedness of the averages in V(dv) implies a.e. convergence of the averages (a result recently obtained by Assani). In order to do
doi:10.1017/s0143385700005447
fatcat:iomh43matzcfdm4zqswboqtxai