A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
ON LORENTZ GCR SURFACES IN MINKOWSKI 3-SPACE
2016
Bulletin of the Korean Mathematical Society
A generalized constant ratio surface (GCR surface) is defined by the property that the tangential component of the position vector is a principal direction at each point on the surface, see [8] for details. In this paper, by solving some differential equations, a complete classification of Lorentz GCR surfaces in the three-dimensional Minkowski space is presented. Moreover, it turns out that a flat Lorentz GCR surface is an open part of a cylinder, apart from a plane and a CMC Lorentz GCR surface is a surface of revolution.
doi:10.4134/bkms.2016.53.1.227
fatcat:3usah7keozepvn7deakwdjy3ze