A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

Xinghua Lou, Minjung Kang, Panagiotis Xenopoulos, Silvia Muñoz-Descalzo, Anna-Katerina Hadjantonakis
<span title="">2014</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5znprrcm2vajbf6a4a46xjhl5i" style="color: black;">Stem Cell Reports</a> </i> &nbsp;
Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/ C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and
more &raquo; ... image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.stemcr.2014.01.010">doi:10.1016/j.stemcr.2014.01.010</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24672759">pmid:24672759</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3964288/">pmcid:PMC3964288</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yw3zptwitrgv7owxjmtv77bmqq">fatcat:yw3zptwitrgv7owxjmtv77bmqq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427051301/https://purehost.bath.ac.uk/ws/files/69051709/MINS.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d9/ab/d9abd93264521bc9b10a2f6766d4a32d2cac1e4b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.stemcr.2014.01.010"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964288" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>